

National standards of the People's Republic of China

GB/T 1299—2014 Instead of GB / T 1299—2000.GB/T 1298- -2008

tool and mould steel

Tool and mould steels

<u>2014-12-05 Release 2 0 1 5-0 9-0 1 implementation</u>

General Admin	nistration of Quality	Qua
Supervision,	Inspection and	ran

tine of the People's Republic of China

publish

table of contents

prefaceI
1 range1
2. Normative references to the reference documents1
3 by classification2
4. Order content
5 Size, shape, and weight
5.1 Dimension, shape and allowable deviation of hot rolled steel rod and rod 3
5.2 Dimension, shape and allowable deviation of wrought steel bars 6
5.3 Dimension, shape and allowable deviation of the cold-drawn steel rod7
5.4 Dimension, shape and allowable deviation of silver-bright steel bar7
5.5 Size, shape and allowable deviation of machining delivered steel7
5.6 Weight
6. Technical requirements
6.1 Brand number and chemical composition
6.2 Smelting method
6.4 Delivery Hardness
6.5 low-fold tissue
6.6 Microscopic tissues
6.7 Nonmetallic inclusions
6.8, and the decarbonization layer
6.9 Relative magnetic permeability23
6.10, detected by ultrasound
6.11, and the surface quality25
6.12, special requirements
7 Test method25
8. Inspection rules
8.1 Inspection and acceptance
8.2 Group and batch rules26
8.3 Samquantity and sampling site
8.4 Reinspection and judgment rules27
9 Packaging, marking and quality certificate
Appendix A (Normative Appendix) standard rating diagram
Appendix B (Normative Appendix) Test method for steel quenching permeability of non-alloy tools
Appendix C (Informatic Appendix) Main features and uses of each brand41
Appendix D (Information Appendix) Compartable of domestic and foreign standard grade of die steel

preface

This standard is drafted according to the rules given in GB / T 1.1-2009. This standard replaces GB / T1299-2000 Alloy Tool Steel and GB / T 1298-2008 Carbon Tool Steel. The main changes of this standard from GB / T 1299-2000 are as follows:

—— The standard name is modified to "Work Die Steel";

— The maximum diameter or side length of forged round steel and square steel to 800 mm; the maximum size of hot rolled flat steel to 200 mm (thickness) 850 mm (width); the maximum size of forged flat steel to 1000 mm (thickness) 1500 mm (width):

----- Modified the delivery length and

allowable deviation of hot rolled round

steel and square steel; —— modified the

size, shape and allowable deviation of hot

rolled flat steel;

---- Modified the dimensions and allowable deviation regulations of forged round steel, square steel and flat steel;

---- Add steel size, shape and allowable deviation of hot rolled strip, silver bright steel bar and machining delivery; ---- Add delivery weight regulation:

---- Added non-alloy steel for die steel and steel for roll;

— Add 55 grades and related technical requirements, including: T7, T8, T 8 Mn, T9, T10, T11, T12, T13 and other 8 non-alloy steel (i. e. the original GB / T 1298-2008 standard middle grade).6CrW 2SiV Steel for 5 rollers for impact resistance tools, including 9 Cr 2 V, 9Cr2Mo, 9Cr2MoV, 8Cr3NiMoV, 9Cr5NiMoV, MnCrWV, 7CrMn2Mo, 5Cr8MoVSi, Cr8Mo2VSi, W6Mo5Cr4V2, Cr 8, Cr12W, 7Cr7Mo2V2Si and other 8 cold-working mold steel, 4CrNi4Mo, 4Cr2NiMoV, 5CrNi2MoV, 5Cr2NiMoVSi, 4Cr5MoWVSi, 5Cr5WMoSi, 4Cr5Mo2V, 3Cr3Mo3V, 4Cr5Mo3V, 3Cr3Mo3VCo3 And other 10 hot-making mold steel;

 $\rm SM45$, $\rm SM50$, $\rm SM55$, $\rm 4Cr2Mn1M\,oS$, $\rm 8Cr2MnWMoVS$, $\rm 5CrNiMnMoVSCa$, $\rm 2CrNiMoMnV$,

06Ni6CrMoVTiAI, 2CrNi3Mo Al, 1Ni3MnCuMoAI, 00Ni18Co8Mo5TiAI, 2Cr13,4Cr13,4Cr13NiVSi, 2Cr17Ni2,3Cr17Mo, 3Cr17NiMoV, 9Cr18,9Cr18MoV, et al. 19 plastic die steel 2Cr25Ni20Si2,0Cr17N i4Cu4Nb, Ni25Cr15Ti2MoMn , Ni53Cr19Mo3TiNb and other 4 special purpose mold steel:

---- Cancel allowable deviation of chemical composition of finished steel:

---- Modified the provisions on

phosphorus, sulfur and other residual

elements in steel; --- modified the

provisions of steel delivery status:

— Modified the qualification level of steel low tissue and added the inspection method of electric slag refused steel; — — tightened the qualification grade of round steel and square steel:

____Added test requirements

for nonmetallic inclusions:

____Added ultrasound test

regulations:

---- Strict steel surface quality requirements. And added the silver bright steel bar and machining steel rod surface quality requirements;

- Appendix A (normative appendix) added non-alloy steel "bead body organization standard rating chart and mesh carbide standard rating chart" (i. e. GB / T 1298- -2008 appendix A);
- —— Revised "Domestic and foreign standard number control table of industrial die steel", and adjusted from Appendix B (informative appendix) to Appendix D (informative appendix):
- —— Annex B (Normative Annex) "Test Method" (i. e. Annex B in GB / T 1298- -2008. At the same time, the sample sampling location is specified to GB / T 225):

--- Annex C (informative appendix) "Main features and uses of each sign".

This standard is put forward by the China Iron and Steel Association. This standard is centralized by the National Technical Committee of Steel Standardization (SAC / T C 183).

The main drafting units of this standard: Fushun Special Steel Co., LTD., Steel Research Institute, Metallurgical Industry Standard Information Research Institute.

This standard is mainly participated by the drafting units: Jiangyou Great Wall Special Steel Co., LTD., Baosteel Special Steel Co., LTD., Zhejiang Weisheng Holdings limited company.

The main drafters of this standard are: Kang Aijun, Ma Dangshen, Gu Qiang, Luan Yan, Chi Hongxiao, Liu Zhentian, Dong Xuedong, Dai Qiang.

The main participants of this standard are: Chu Yanli,

Zou Liandi, Xin Donghui, Miao Zhigang, Feng Chunyu.

Previous releases of this standard are:

_____GB/T 1299_1977.GB/T 1299_1985.GB/T 1299_2000:

-----GB/T 1298-1977.GB/T 1298-1986.GB/T 1298-2008

0

tool and mould steel

1 Range

This standard specifies the classification, order content, size, shape, weight and allowable deviation, technical requirements, test methods, inspection rules, packaging, marking and quality certificate of work and die steel.

This standard is applicable to industrial mold steel hot rolling, forging, cold drawing, silver bright strip steel and machining delivery steel, and its chemical composition is also applicable to ingot, broken and its products.

2. Normative references to the reference documents

The following documents are essential for the application of this document. For all dated references, the dated version only applies to this document. The latest version (including all amendments) applies to this document.

GB/T 223.5	Determination of silicon and all silicon content of prototype silicon molyhdate spectrophotometric method								
GB/T 223.8	teel and Alloy Chemical Analysis-Sodium Fluoride separation-EDTA itration method for determination of aluminum content								
GB/T 223.11	Determination of steel and alloy chromium content by visible titration or potential titration								
GB/T 223.13	Steel and alloy chemical analysis method Determination of vanadium content by ammonium ferrous sulfate titration								
GB/T 223.14	Chemical analysis Determination of vanadium content by tantalum methods for steel and reagent alloys								
GB/T 223.18	Chemical analysisSodium thiosulfate separation-iodinemethods for steel and alloysmeasurement method to determine copper quantity								
GB/T223.19	Chemical analysis Determination of copper content by methods for steel and photometric extraction of trichloromethane alloys								
GB/T223.22	Chemical analysis Determination of cobalt content by methods for steel and spectrophotometric method of nitroso-R salt alloys								
GB/T 223.23	Determination of steel and alloy nickel content by butadione oxime spectrophotometry								
GB/T 223.26	Determination of steel and alloy molybdenum content by thiocyanate spectrophotometric method								
GB/T 223.28	Method for chemical analysis of steel and alloy determination of molybdenum by α -benzooxime weight								
GB/T 223.29	Determination of lead content in steel and alloy carrier precipitation-crethanol orange spectrophotometric method								
GB/T 223.31	Determination of arsenic content in steel and alloy: distillation and separation-molybdenum blue spectrophotometric method								

GB/T223.43	Determination of steel and alloy tungsten content by weight method and spectrophotometry method
GB/T 223.47	Methods for steel and alloy chemical analysis: Determination of antimony by carrier precipitation-molybdenum blue photometry
GB/T 223.48	Chemical analysis of steel and alloy: Determination of bismuth by orange photometry
GB/T 223.50	Steel and alloy chemical analysis: Phenyl fluorescent ketone- hexadecyltrimethylamine bromide was measured by direct photometry
Tin quantity	
GB/T 223.53	Chemical analysis of steel and alloy: Measurement of copper content by flame atomic absorption spectrophotometry
GB/T 223.54	Methods for chemical analysis of steel and alloy; determination of nickel content by flame atomic absorption spectrophotometry
GB/T 223.58	Methods for steel and alloy chemical analysis of sodium arsenite- sodium nitrite titration
GB/T 223.59	Determination of steel and alloy phosphorus content bismuth phosphorus-molybdenum blue spectrophotometry and antimony phosphorus-molybdenum blue spectrophotometry
GB/T 223.60	Chemical analysis Decontent was determined by perchloric acid methods for steel and alloys
GB/T 223.61	Chemical analysis The phosphorus amount was determined by the methods for steel and Ammonium phosphorolybdate volume method alloys
GB/T 223.62	Chemical analysis Ptermination phowas determined by butyl methods for steel and acetate alloys
GB/T 223.63	Chemical analysis Mangn was measured photometrically by sodium methods for steel and periodate (potassium) alloys
GB/T 223.64	Determination of steel and alloy manganese content by flame atomic absorption spectrometry

GB / T 223.67 Determination of sulfur content in steel and alloy by secondary methyl blue spectrophotometry GB / T 223.68 Iron and steel and alloy chemical analysis method Measurement of potassium iodate in tubular furnace GB / T 223.69 Determination of carbon content in steel and alloy after combustion gas capacity method in pipe furnace GB / T 223.71 Steel and alloy chemical analysis method tube furnace after combustion weight method determination of carbon content GB / T 223.72 Determination of sulfur content of steel and alloy weight method GB / T 223.76 Steel and Alloy chemical analysis method Flame atomic absorption spectrometry determination of vanadium content GB / T 223.82 Iron and steel determination of hydrogen content inert gas pulse melting heat conductivity method GB / T 223.85 Determination of sulfur content of steel and alloy after combustion infrared absorption method of induction furnace GB / T 223.86 Determination of total carbon content of steel and alloys after combustion of induction furnace decarbonization layer depth determination of GB / T 224 steel Test method for end quenching permeability of GB / T 225 steel (Jominy test) Low power tissue and defect acid corrosion test method of GB / T 226 steel GB / T 230.1 Metallic materials-Rockwell hardness test-Part 1; test methods (A, B, C, D, E, F, G, H, K, N, T scale) GB / T 231.1 Metal materials-hardness test-Part 1: Test methods GB / T 702-2008 Dimension, shape, weight and allowable deviation of hot rolled steel bars GB / T 905- -1994 Cold-drawn round steel, square steel, the dimension, shape, weight and allowable deviation of hexagonal steel GB / T 908- -2008 Dimension, shape, weight and allowable deviation of forged steel rod GB / T 1979- -2001 structural steel GB / T 2101 section steel acceptance, packaging, marking and quality certificate of the general provisions of GB / T 3207- -2008 Silver bright steel GB / T 4336 atomic emission spectrum analysis method of carbon steel and medium and low alloy steel (conventional method) GB / T 6402- -2008, ultrasonic detection method of steel forgings GB / T 6394 average grain size of metals

GB / T 10561- -2005 Determination of nonmetallic inclusions in steel a standard rating graph microtest method GB / T 11261 steel oxygen content determination of pulse heating inert gas melting a infrared absorption method GB / T 13298 metal microtissue test method GB / T 14979- -1994 steel size, shape, weight and allowable deviation GB / T 17505 steel and steel products delivery general technical requirements Sampling and sample preparation methods for GB / T 20066 steel and iron chemical composition determination Determination of total carbon and Sulphur content in GB / T 20123 Steel post-combustion infrared Absorption method (conventional method) Determination of nitrogen content in GB / T 20124 Steel inert gas (conventional method) GJB 937- -1990 Measurement method of magnetic permeability of weak magnetic materials ASTM A 604 Test method for reimmersion of steel rod and remelting of self-consuming electrode (Standard test method for macroetch testing of

3 Classification

3.1 Steel is divided into eight categories according to its use:

consumable electrode remelt ed steel bars and billets)

- A) Non-alloy steel for blade die:
- B) steel for measuring tool:
- C) Steel for impact-resistant tools:

```
And d) Steel for roll:
```

- E) Steel for cold mold;
- F) Steel for hot working die:
- G) Steel for plastic mold:
- H) Steel for special purpose molds.

3.2 Steel is divided into two categories according to the processing method:

- A) Steel UP for pressure processing:
 - 1) Thermal pressure processing of UHP;
 - 2) Cold pressure processing of UCP.
- B) Steel UC for cutting and processing.

The processing method of steel shall be indicated in the contract.

- 3.3 Steel is divided into four categories according to its chemical composition:
 - A) Non-alloy tool steel (brand head with "T");
 - B) Alloy tool steel:
 - C) Non-alloy die steel (with "SM"):

And d) alloy die steel.

Note: Non-alloy tool steel is the original carbon tool steel.

4 Order content

A contract or order for steel ordered under this standard shall at least include the following:

- A) Standard number;
- b) product name:
- c) the name of a shop:
- And d) The smelting method (see 6.2):
- e) condition of delivery;
- Ff) size and allowable deviation group (see Chapter 5):

For g) using the processing method (see 3.2):

H) Other special requirements (see 6.12).

5 Size, shape, and weight

5.1 Dimension, shape and allowable deviation of hot rolled steel rod and rod

5.1.1 Hot-rolled round steel and square steel

5.1.1.1The size, shape and allowable deviation of hot-rolled round steel and square steel shall comply with the provisions of the 2 groups in GB / T 702-2008. If the demander requires other groups, the allowable deviation shall be indicated in the contract.

5.1.1.2The general length of hot-rolled round steel and square steel shall be 2000 mm[~]7000 mm. It is allowed to overlap no more than 10% of the total weight and a length of not less than 1000 mm. The length shall be specified in the contract • the allowable deviation of the length is + 0mm.

5.1.2 Hot-rolled flat steel

5.1.2.1 Dimensions and allowable deviation

5.1.2.1.1 The size and allowable deviation of hot rolled flat steel with nominal width of 10 mm $^{\sim}$ 310 mm shall comply with the provisions in Table 1.

5.1.2.1.2 The size and allowable deviation of hot rolled flat steel with nominal width greater than 310 mm 850 mm shall comply with the provisions in Table 2, and the size allowable deviation group shall be indicated in the contract.

Table 1 Dimensions and allowable deviation of hot-rolled flat steel with 1 nominal width of 10 mm 310 mmUnit is mm

nominal width	Allowed deviation, not greater than	normal thickness	Allowed deviation, not greater than
10	ten point seven	$\geq 4 \sim 6$	ten point four
>10~-18	ten point eight	>6~10	ten point five
>18~30	+1.20	>10~14	+0.60
>30~50	+1.60	>14~25	+0.80
>50~80	+2.30	>25~30	eleven point two
>80~160	+2.50	>30~60	+1.40
>160~200	+2.80	>60~100	eleven point six
>200~250	thirteen		
>250~-310	thirteen point two	_	

Table 2	Dimensions	and	allowable	deviation	of	hot-r	olled	flat	t s	teel	with	a	no	miı	nal
				width	ı gr	reater	than	310	mm	~850	mm	Uni	t	is	mm

	Dimensions allow deviation										
		G	roup 1		Gi	roup 2	Three groups				
normal thickness	Nominal w 300~455	idth is>	Nominal width is> 455~850		Nominal width is> 300~850		Nominal width is 510~850				
	Thick ness allow s, allow for devia tion	Width allow ed, allow ed devia tion	Thick ness allow s, allow for devia tion	Width allow ed, allow ed devia tion	Thick ness allow s, allow for devia tion	Width allow ed, allow ed devia tion	Thick ness allow s, allow for devia tion	Width allow ed, allow ed devia tion			
6~12	+1. 2 0	+5. 0 0	+1. 5 0	+7. 0 0	+1. 5 0						
>12~20	+1. 2 0	X 6. 0- -2. 0	+1. 5 0	X., 7.0- 3.0	elev en po in	+15.	protoco 1	protocol			
					t si	0					

					Х		
>20~70	+1.	+6.0	+1.	+7.0	+1. 8 0		
>70~90	4 0	2.0	0	3.0	thir		
>90~-100 >100~200	+2.	+7.0	twel ve	+10. 0 —	te en	+6. 0	+15.

5.1.2.2 Delivery length

4

5.1.2.2.1 The usual delivery length of hot-rolled flat steel shall comply with the provisions of Table 3.

nominal width	Usually the length	Short ruler length	Short-foot matching rate
10~310	2000~6000	≥1000	The delivery of the
>310~850	1000~6000	500	ruler length shall not exceed 10% of the total weight of the steel

Table 3 The usual delivery length of hot-rolled flat steel is in mm

5.1.2.2.2 When fixed or delivery, the length shall be indicated

in the contract. The allowable length deviation is + $^{\prime\prime}$

mm. 5. 1. 2. 3appearance

5.1.2.3.1 The bending degree of hot-rolled flat steel shall comply with the provisions in Table 4.

Table 4 Curtuosity of hot-rolled flat steelUnit is mm

		Curosity (plane, side)				
nominal width	Size-allowed deviation group	Bend per meter	Total bending degree			
		Not greater than				
10~310		4.0	0.40% of the steel length			
>310~850	Group 1	3.0	0.30% of the steel length			
	Group 2, group 3	4.0	0.40% of the steel length			

5.1.2.3.2 The section shape of hot-rolled flat steel is not correct as shown in GB / T 702-2008. Figure 4. The maximum allowable size (or side drum shape) C value shall comply with the following provisions:

A) The C value of hot-rolled flat steel with a nominal width of 10 mm \sim 310 mm shall meet the provisions in Table 12 of GB / T 702-2008:

B) The C value of hot-rolled flat steel with a nominal width greater than 310 mm \sim 850 mm shall comply with the provisions of Table 5:

C) If the C value is too poor, it can be cleaned by machining. If the supplier can guarantee that the C value is qualified, it can not be detected.

Table 5 C value with nominal width over 310 mm to 850 mmUnit is mm

	Group 1		Gi	roup 2	Three groups		
normal thickness	Nominal width is> 310~455	Nominal width is> 455~850	normal thickness	Nominal width is> 310~850	normal thickness	Nominal width is≻ 510~850	
	Not greater			Not		Not	

	tha	an		greater than		greater than
6~40	2.5	3.0	6~13	8.0		
>40~70	2.0	2.5	>13~50	3.0		10.0
>70~90	1.5	2.0		0.0	100~200	
>90~200	2.0	2.5	>50 -200	8.0		

5

5.1.2.3.3, the corner radius R of hot rolled flat steel shall comply with the provisions of Table 6.

nominal width	Size-allowed deviation group	radius of corner R. Not greater than
10~310		Permit a slight blunt angle
N 0 1 0 2 0 7 0	Group 1	4.0
>310 850	Group 2, group 3	10.0

Table 6 Round radius of hot rolled flat steelUnit is mm

5.1.2.3.4 The ends of hot-rolled flat steel shall be cut straight. Burrs at both ends shall be removed, but the presence of burrs not greater than 5.0 mm is allowed. Hot-rolled flat steel cut by a press. Local deformation is allowed at both ends. The shear slope of hot-rolled flat steel shall meet the provisions of Table 7.

Table	7	Slslope	of	hot	rolled	flat	steel Unit	is	mm
-------	---	---------	----	-----	--------	------	-------------------	----	----

nominal width	Cut the slope					
	Width oneself 100	≤6.0				
10 -310	Width> 100	≪8.0				
>310~850	thickness	It is 8% of the thickness of the uterus				
	width	4% The width of the uterus				

5.1.2.3.5 No obvious torsion is allowed for hot-rolled flat steel. The length difference between the two diagonal lines on the same section shall not be greater than the nominal width tolerance of the flat steel.

5.1.3 Hot-rolled disc strip

The size, shape and allowable deviation of the hot rolled strip shall comply with the provisions of GB / T 14981.

5.2 Dimension, shape and allowable deviation of wrought steel bars

5.2.1 Forging of round steel and square steel

5.2.1.1 The size and allowable deviation of wrought round steel and square steel with nominal diameter or side length of 90 mm 400 mm shall comply with the provisions of Group 2 in Table 3 of GB / T 908-2008. If the demander requires, the allowable deviation of other groups shall be indicated in the contract.

5.2.1.2The allowable size deviation of forged round steel and square steel with nominal diameter or side length greater than 400 mm \sim 800 mm shall comply with the provisions of Table 8.

Table 8 The allowable size deviation unit of forged round steel and square steel with nominal diameter or side length greater than 400 mm²800 mm is 12 mm

Nominal diameter or side length	Dimensions allow deviation
>400~500	+12. 0
>500~800	+13. 0 - 3.0

5.2.1.3 The delivery length of forged round steel and square steel shall not be less than 1000 mm. Interlap shall not exceed 10% of total weight and not less than length

500 mm short material. When fixed ruler or double ruler for delivery. The length shall be indicated in the contract. The allowable length deviation is + 80mm.

5.2.1.4The curvature of forged round steel shall not be greater than 5.0 mm per meter, and the total curvature shall not be greater than 0.50% of the total length; the irroundness of round steel shall not be greater than 0.7 times the nominal diameter tolerance.

6

5.2.1.5The bending of forged square steel shall not be greater than 5.0 mm per meter, and the total bending shall not be greater than 0.5% of the total length; the diagonal length difference of square steel in the same section shall not be greater than 0.7 times the nominal side length tolerance; the side length shall not be greater than 300 mm. The radius of the corners R at the corners shall not be greater than 5.0 mm. For square steel with edge length greater than 300 mm, the angular radius shall not be greater than 10.0 mm. However, the distance between the relative rounded corners (diagonal) should not be less than 1.3 times of the nominal side length: significant torsion is not allowed.

5.2.1.6The two ends of forged round steel and square steel should be cut straight.

5.2.2 Forged flat steel

5.2.2.1The size and allowable deviation of forged flat steel of nominal width 40 mm 3 300 mm shall comply with the provisions of Group 2 in Table 4 of GB / T 908-2008. If the demander requires other groups, the allowable deviation shall be indicated in the contract.

5.2.2.2The size and allowable deviation of forged flat steel with a nominal width over 300 mm $^{\sim}1500$ mm shall comply with the provisions of Table 9.

normal thickness	Thickness allows for deviation	nominal width	Width allows deviation						
>160~200	eigh te en	>300~-400	+15. 0 0						
>200~400	+10. 0 0	>400~600	+20. 0 0						
>400~1000	+15. 0 0	>600~-1500	+25. 0 0						
The cross-sectional area of the forged flat steel is 1200-000 mm ² . Width: it is 6:1 thick.									

Table 9 Dimensions and allowable deviation units of forged flat steel greater than $300~{\rm mm}^{\sim}1500~{\rm mm}$ are mm

5.2.2.3The delivery length of forged flat steel shall not be less than 1000 mm, and the mating shall not exceed 10% of the total weight, and the length is not less than 500 mm. When delivery, the length shall be specified in the contract. The allowable length deviation is + 8mm.

5.2.2.4The plane curvature of the forged flat steel shall not be greater than 5.0 mm per meter. The total plane curvature shall not be greater than 0.50% of the total length: the side curvature of the flat steel (sickle bend) shall not be greater than 5.0 mm per meter. The total side curvature (sickle bend) shall not be greater than 0.50% of the total length.

5.2.2.5For flat steel with nominal thickness or width not greater than 300 mm, the angular radius R at the corners shall not be greater than 5.0 mm; for flat steel with nominal thickness or width greater than 300 mm, the rounded radius R at the corners shall not be greater than 10.0 mm, but the length difference between two diagonal bars on the same section shall not be greater than its nominal width tolerance. No significant torsion is allowed for the flat steel.

5.2.2.6Both ends of forged flat steel shall be cut straight.

5.3 Dimension, shape and allowable deviation of the cold-drawn steel bar

The size, shape and allowable deviation of the cold pull steel rod shall comply with the hll class provisions of GB / T 905-1994. If the demander requires other groups, the allowable deviation shall be indicated in the contract.

5.4 Dimension, shape and allowable deviation of silver-bright steel bar

The size, shape and allowable deviation of the silver bright steel bar shall comply with the hl class 1 regulation of GB / T 3207- -2008. If the demander requires other groups, the allowable deviation shall be indicated in the contract.

5.5 Dimension, shape and allowable deviation of steel delivered by machining

5.5.1 The allowable dimensional deviation of the machined steel shall comply with the provisions of Table 10. If the demander requires other dimensional allowable deviation, it shall be indicated in the contract.

Nominal dimensions (diameter, side length, or width, thickness)	allowable deviation
≤200	+1. 5 0
>200~400	+2. 0 0
>400	+3. 0 0

Table 1 O The allowable deviation unit of machining steel is mm

5.5.2 The curvature of machined steel shall not be greater than 2.5 mm per meter: the rounded radius R of square steel and flat steel shall not be greater than 2.0 mm. Other requirements shall be implemented according to the corresponding standards.

5.6 Weight

Steel is generally delivered by actual weight.

6 Technical requirements

6.1 Brand number and chemical composition

6.1.1 The grade number and chemical composition of the steel (finished product analysis) shall comply with the provisions of Table 11 to Table 18.

Table 11 Brand number and chemical composition of non-alloy steel for blade molds

			Chemical composition (mass fraction)/ $\%$							
order number	Unified digital code name	the name of a shop	(Si	Mn					
1-1	T00070	T7	0,65~0.74	≤0.35	≤0,40					
1-2	T00080	Т8	0.75~ [~] 0.84	≪0.35	0.40					
1-3	T01080	T8Mn	0.80~-0,90	≪0.35	0.40~0.60					
1-4	T00090	Т9	0.85~0,94	≪0.35	≤0.40					
1-5	T00100	T10	0.95~1,04	0.35	0.40					
1-6	T00110	T11	1,05~1,14	≤0.35	0.40					
1-7	T00120	T12	$1.15^{\sim}1.24$	0.35	≪0.40					
1-8	T00130	T13	1,25~-1,35	≪0.35	≤0.40					
Table	Table steel can supply high quality steel • at this grade with "A".									

Table 12 Grade and	chemical	composition	of	steel	for	instrument	blade
--------------------	----------	-------------	----	-------	-----	------------	-------

			Chemical composition (mass fraction)/%							
order number	code name	the name of a shop	(Si	Mn	Cr	W			
2-1	T31219	9Si(r	0.85~-0.95	1,20~1,60	0,30~-0,60	0.95~-1.25				
2-2	T30108	8MnSi	0.75~0.85	0.30 [~] 0.60	0.80~1.10					
2-3	T30200	(r06	1.30~1,45	≤0.40	≤0.40	0.50~0.70				
2-4	T31200	Cr2	0.95~1,10	0.40	0.40	1,30~1,65	-			
2-5	T31209	9Cr2	$0.80^{-0.95}$	0.40	0.40	1.30~1.70	-			
2-6	T30800	W	1,05~1,25	≤0.40	≤0.40	0.10~-0,30	0.80~1.20			

о

GB/ T 129 9-201 4

Table 13 Brand number and chemical composition of steel for impact resistant tools $\stackrel{\mathrm{GB}}{\rightarrow}$

,	Unified 1	the new of	Chemical composition (mass fraction)/%							
order number	digital code name	a shop	С	Si	Mn	Cr	W	Mo	V	
3-1	T40294	4('r\\2Si	0.35~0.45	0.80~1.10	0.40	1.00~-1.30	2.00 [~] 2.50			
3-2	T40295	5CrW2Si	0.45~-0.55	0, 50~0. 80	0.40	1.00~-1,30	2.00~2.50	_	_	
3-3	T40296	6CrW2Si	0.55~0.65	0.50~0.80	0, 40	1,10~1,30	2.20~2.70	_	_	
3-4	T40356	6C'rMnSi2MolV	0.50~0.65	1,75~-2,25	0.60~1.00	0.10~-0,50	-	0.20 [~] 1.35	0.15~-0,35	
3-5	T40355	5Cr3MnSiMo1	0.45~0.55	0,20~-1,00	0.20~0.90	3,00~3,50	_	1.30~1.80	≤0.35	
3-6	T40376	6C'rW2SiV	0.55~0.65	0.70~-1.00	0.15~0.45	0.90~-1,20	1.70~2.20		0.10~-0,20	

Table 14 Grade plate and chemica	composition of steel	for roll
----------------------------------	----------------------	----------

	Un - 6 - 1		Chemical composition (mass fraction)/%									
number	digital code	of a shop	(Si	Mn	Р	S	Cr	W	Мо	Ni	V
4-1	T42239	9Cr2V	0.85~-0.95	0.20~-0.40	0,20~-0.45			1.40~1,70	-	_	_	0.10-0.25
4-2	T42309	9Cr2Mo	0.85~-0,95	0,25~-0,45	0, 20∼−0, 35			1.70-2.10	-	0.20~-0.40	_	_
4-3	T42319	9Cr2MoV	0.80~0,90	0.15~-0.40	0, 25 [~] 0. 55			1.80~2.40	-	0.20~0.40	_	0.05~0.15
4-4	T42518	8(r3NiMoV	0.82~-0.90	0.30~-0.50	0.20~-0.45	0.020	0.015	2.80~3,20	-	0.20~-0.40	0.60~0.80	0.05~0.15
4-5	T42519	9Cr5NiMoV	0.82~0.90	0.50~-0.80	0.20~0.50	≤0.020	≪0.015	4.80~5,20	-	0.20~0.40	0.30~0.50	0.10~0.20
* See	Table 19.											

-

	Unified	the name of	Chemical composition (mass fraction)/%										
numbe r	digital code name	a shop	С	Si	Mn	р	S	Cr	W	Mo	V	Nb	Со
5-1	120019	9Mn2V	0.85~-0,95	0.40	1.70~2,00						0,10~-0.25		
5-2	120299	90rWMn	0.85~-0.95	0.40	$0.90^{\sim}1.20$	А		0.50~-0.80	0.50~-0.80				
5-3	121290	(rWMn	0.90~1,05	0.40	0.80~1,10			0.90~-1.20	1,20~1,60				-
5-4	120250	Mn (rWV	0.90~105	0,10~0.40	$1.05 \sim 1.35$			0.50~-0.70	0.50~-0.70		0.05~-0.15		
5-5	121347	7CrMn2Mo	0.65~0.75	0. 10 [~] 0. 50	1.80~-2.50	А		0.90~1,20		0,90 [~] 1,40			
5-6	T21355	5C8MoVSi	0,48~-0.53	0,75~1,05	0,35~-0,50	≤0.030	0,015	8.00~-9.00		1,25~1.70	0.30~-0,55		-
5-7	121357	7CrSiMnMoV	0.65~0.75	0.85~1.15	0.65~-105			0.90~1.20	_	0.20~0.50	0.15~-0.30		-
5-8	T21350	Cr8Mo2SiV	0.95~1.03	0.80~1.20	0.20~-0.50			7.80~-8,30		2.00~-2.80	0.25~-0.40		
5-9	121320	Cr4W2MoV	1.12~1,25	0.40~0.70	≤0.40			3.50~4,00	1,90~2,60	0,80~1,20	0.80~1.10		
5-10	121386	6Cr4W3Mo2VNb	0.60~0.70	0.40	≤0.40			3.80~-4.40	2.50~3.50	1.80~2.50	0.80~1.20	0.20~0.35	
5-1I	T21836	6W6Mo5C'r4V	0.55~-0,65	0,40	0.60			3,70~-4.30	6.00~-7,00	4.50~-5.50	0.70~-1,10		
5-12	T21830	W6Mo5Cr4V2	0,80~-0,90	0,15~-0,40	0,20~-0,45			3,80~-4.40	5, 50~-6. 75	4, 50 [~] 5, 50	1.75~-2,20		
5-13	121209	Cr8	1.60~1.90	0.20~0.60	0.20~-0.60			7.50~-8.50			_	_	
5-14	121200	(r12	2.00~2,30	0,40	0.40			11, 50 [~] - 13. 00					
5-15	121290	(r12W	2.00~2.30	0.10~0.40	0.30~-0.60			11.00~- 13.00	0.60~-0.80		_		-
5-16	121317	7Cr7Mo2V2Si	0.68~0.78	0.70~1.20	≤0.40			6.50 [~] -7.50		1.90~-2.30	1.80~-2.20		
5-17	T21318	Cr5MolV	0,95~1,05	0.50	≤1.00			4.75~5.50		0.90~1.40	0.15~-0.50		
5-18	121319	(r12MoV	1.45~1.70	0.40	≪0.40			11.00~12.50	_	0.10~- 0.60	0.15~-0.30	_	-
5-19	T21310	(r12MolVI	1.40~-1.60	0.60	≤0.60			I1.00~- 13.00	_	0.70~-1.20	0.50~-1,10		≤1.

Table 15 Grade and chemical composition of steel for cold-making mold

GB/ T 129 9-

201

				Chemical composition (mass fraction)/%										
order numbe r	Unified digital code name	the name of a shop	(Si	Mn	Р	S	Cr	W	Mo	Ni	V	Al	Co
6-1	T22345	5CrMnMo	0.50~0.60	0.25~-0,60	1.20~-1.60			0.60~0.90		0, 15~- 0. 30				
6-2	T22505	5CrNiMo	0.50~0,60	0.40	0.50~-0.80			0.50~-0.80		0.15~-0.30	1.40~-1.80			
6-3	123504	4CrNi4Mo	0.40~0.50	0.10~-0.40	0.20~0.50		А	1,20 [~] 1.50		0.15~-0.35	3.80~-4.30			
6-4	123514	4Cr2NiMoV	0.35~-0.45	0.40	0.40			1.80~2.20		$0.45 \sim -$ 0.60	1.10~1,50	0.10~-0.30		
6-5	123515	5CrNi2MoV	0.50~-0.60	0.10~0.40	0.60~-0.90			0.80~1.20		$0.35 \sim 0.55$	1.50~1,80	0.05~-0.15		
6-6	123535	5Cr2NiMoVS	0.46~0.54	0.60-0.90	0.40~0.60			1.50~2.00		$0.80^{\sim}1.20$	0.80~1.20	0,30~0.50		
6-7	T23208	8Cr3	0.75~0.85	0.40	≤0.40			3,20~3.80					—	
6-8	T23274	4Cr5W2VSi	0.32~0.42	0.80~1,20	≤0.40			4.50 [~] 5.50	1.60~-2.40			0,60~-1.00		
6-9	123273	30r2W8V	0.30~-0.40	0.40	≪0.40			2,20-2.70	7.50 [~] 9.00			0.20~-0.50		
6-10	T23352	4Cr5MoSiV	0.33~0.43	0.80~1,20	0.20~0.50		А	4.75 [~] 5.50		1.10~1.60		0, 30~- 0. 60		
6-11	123353	Cr5MoSiVI	0.32~0.45	0.80~1.20	0.20~-0.50			4,75 [~] 5.50		1, 10~1.75		0.80~ ~1.20		
6-12	T23354	4(r3Mo3SiV	0,35~-0,45	0,80~1,20	0.25~-0.70			3,00-3.75		2,00~-3,00		0,25~-0.75		
6-13	T23355	5Cr4M%3SiMnVAI	0,47~-0,57	0,80~-1,10	0,80~-1,10			3,80~4.30		2,80~-3,40		0,80~-1,20	0,30~-0,70	
6-14	123364	4CrMnSiMoV	0,35~-0.45	0.80~-1.10	0.80~1.10		А	1,30~-1.50		0.40~-0.60		0.20~-0.40		
6-15	123375	5Cr5WMoSi	0.50 [~] 0.60	0.75~1.10	0.20~0,50			4.75~5.50	1.00~-1,50	1.15~1.65				-
6-16	123324	ICr5MoWVSi	0.32~-0.40	0.80~1.20	0.20-0.50			4.75~5.50	1.10~1.60	$1.25^{\sim}1.60$		0.20~0.50		
6-17	T23323	3Cr3Mo3W2V	0.32~-0.42	0.60-0,90	≪0.65			2,80~3.30	1.20~-1.80	2.50~3.00		0,80 [~] 1,20		
6-18	T23325	5Cr4W5Mo2V	0.40~-0,50	0.40	≪0.40		A	3,40~4.40	$4.50 \sim -5.30$	1.50~-2.10		0.70~-1.10		
6-19	T23314	4Cr5M 6 2V	0.35~0.42	0.25-0,50	0.40~- 0.60	≤0.020	0,008	5.00~5.50		2.30~-2.60		0.60~-0.80	—	
6-20	123313	3Cr3M3V	$0.28 \sim -$ 0.35	0.10~-0.40	0.15~-0.45	0.030	0.020	2.70 [~] 3.20	_	2.50~-3.00		0.40~-0.70		
6-21	123314	4Cr5Mo3V	0.35~-0.40	0.30-0.50	0.30~0.50	0.030	0.020	4.80~5.20		2.70~3.20		0,40~- 0.60		
6-22	123393	3Cr3Mo3VCo3	0. 28~-0. 35	0. 10~-0, 40	0.15~0,45	≤0.030	≤0,020	2.70~3,20		2,60~3,00		0, 40~-0, 70		2.50~-3,00
	See Table 19.													
ĺ	Vanadium co	ntent is les	s than (0.20%										

	Unifi			Chemical composition (mass fraction)/%											
order numbe r	ed numbe	the name of a shop	С	Si	Mn	р	S	Cr	W	Mo	Ni	V	AI	Со	other
	r,														
	the														
	word														
	code														
	name														
7-1	T10450	SM15	$0.42 \sim -$ 0.48	0. 17 [~] - 0, 37	0.50 [~] - 0.80										
7-2	T10500	SM50	$0.47 \sim 0.53$	0, 17 ^{~-} 0, 37	0, 50-0, 80										
7-3	T10550	SM55	0.52~- 0,58	0, 17 ^{~-} 0, 37	0.50 [~] - 0.80									one	one
7-4	T25303	3Cr2M	0.28 ^{~-} 0,40	0.20 ^{~-} 0,80	0,60~ 1,00			1.40~2,00		0, 30 [~] - 0. 55					
7-5	T25553	3Cr2MnNiMo	0.32~- 0.40	0.20 ^{~-} 0.40	1.10 ^{~-} 1.50			1.70~2,00		0, 25 ^{~-} 0. 40	0.85~1.15	one			
7-6	T25344	4CY2Mn1MoS	0.35 [~] - 0,45	0.30 [~] - 0.50	$^{1.40}_{1,60}$	≤0.030	0, 05 ^{~-} 0. 10	1.80~2,00		0, 15 ^{~-} 0, 25					
7-7	T25378	8Cr2MnWMoVS	0.75 [~] - 0.85	0.40	1.30 ^{~-} 1.70	0.030	0.08~0.15	2, 30~-2, 60	0.70 [~] L.10	0.50~0.80		0.10 [~] - 0,25			
7-8	T25515	5(rNiMnMVSCa	0.50 [~] - 0.60	0.45	0.80~ 1,20	0.030	0.06 ^{~-} 0.15	0.80~1,20		$0.30 \sim 0.60$	0.80~ 1,20	0.15 ^{~-} 0.30		_	(a;0.002~0.008
7-9	T25512	2CrNiMoMnV	0.24 ^{~-} 0.30	0, 30	1.40~1,6 0	0.025	≤0,015	1, 25~-1, 45		0.45 ^{~-} 0.60	0,80 [~] - 1,20	0, 10 [~] - 0, 20			
7-10	125572	20rNi3MoA1	0.20 [~] - 0.30	0.20 [~] - 0,50	0.50 ^{~-} 0.80			1.20~-1,80		$0.20 \sim -$ 0.40	3.00~4,00		1.00~1.60		
7-11	T25611	INi3Mn (uMbAl	0.10 ^{~-} 0,20	0.45	1.40- 2,00	0.030	0.015		_	0, 20 [~] - 0, 50	2.90 ^{~-} 3,40		0.70 [~] - 1.20	_	C:0.80-1,20
7-12	A64060	06Ni6CrMhVTiA1	0.06	0.50	0.50			1. 30~1, 60		0,90 [~] - 1.20	5.50 [~] - 6,50	0.08 [~] - 0.16	0. 50 [~] - 0. 90		1i:0.90~-1,30
7-13	A64000	00Nil8Co8Mo57iAl	≤0.03	0.10	≤0.15	0.010	0.010	0.60		$4.50 \sim 5.00$	17.5~ 18,5		$0.05 \sim 0.15$	8, 50~ 10. 0	1i:0.80~-1,10
7-14	S42023	2(r13	0. 16 [~] - 0. 25	≤1.00	≤1.00			12,00~14,00			0.60				

13

Table 17 Grade plate and chemical composition of steel for plastic mold

; B/ T 129 9-201 4

7-15	S42043	4 (r13	0.36 [~] - 0.45	0.60	0.80			12,00~ 14,00	—		0,60			
7-16	125444	4(r13NiVSi	0.36 [~] - 0.45	0.90 [~] - 1.20	0.40 ^{~-} 0,70	0.010	≤0.003	13.00 [~] - 14.00			0, 15 ^{~-} 0, 30	0. 25 [~] - 0. 35		
7-17	125402	20r17Ni2	0. 12~0, 22	≤L00	1.50			15.00~ 17,00			$^{1.50\sim}_{2.50}$			
7-18	T25303	3Cr17Mo	0.33 [~] - 0.45	1,00	1.50			$15.50 \sim 17,50$		0,80~ 1,30	≤1,00			
7-19	125513	3Cr17NiMV	0.32 [~] - 0.40	$0.30 \sim -$ 0.60	$^{0.60\sim}_{0.80}$	0.025	0.005	$16.00 \sim 18.00$		1.00∼ 1,30	0.60~100	0. 15 [~] - 0. 35		
7-20	S44093	9Cr18	0.90 ^{~-} 1,00	0.80	0,80			17.00 [~] - 19,00			0,60			
7-21	S46993	9Cr18MbV	0.85 [~] - 0.95	080	0.80			17,00 [~] 19.00	_	1,00~1.3 0	≪0.60	0.07 [~] - 0.12	_	
	See Ta	able 19.												

,	Unifi			Chemical composition (mass fraction)/%												
order numbe	ed	the name of a shop	(Si	Mn	Р	S	Cr	W	Мо	Ni	V	A1	Nb	Со	other
r	numbe															
	r,															
	the															
	word															
	code															
	name															
8-1	T26377	7Mn15Cr2A I	0, 65 ~	≤0.80	14, 50 ~			2.00~-2,50	0.50~-	0.50^{-}	_	1.50~-	2.30~3,30		-	_
		3V2WM	0.75		16, 50				0.80	-,		2.00				
8-2	\$31049	2Cr25Ni2OSi2	0.25	1.50 [~] 2.50	≤1.50			24.00 ^{~-} 27.00	-		18,00~-21.00					
8-3	\$51740	0Cr17N4C4Nb	≤0.07	≤1,00	≤1.00	A		15.00 [~] - 17.00	-		3.00~-5,00	-		Nb: 0,15 ^{~-} 0,45		Cu;3.00~-5,00
8-4	H21231	Ni25(r15Ti2MoMn	≤0.08	≤1.00	2,00	0. 030	0.020	13, 50~ 17. 00		1.00~ 1,50	22.00~26.00	0. 10 ^{~-} 0. 50	≪0.40		_	Ti:1.80~-2,50 B:0.001~- 0.010
8-5	H07718	Ni530r19Mo3TiNb	008	0.35	≪0.35	0, 015	≪0.015	17.00 [~] - 21.00	-	2, 80 ^{~-} 3, 30	50.00 [~] -55.00		0. 20~-0, 80	Nb+Ta*: 4.75 ^{~-} 5,50	1,00	Ti:0,65 [~] - 1.15 B 0.006
	See Ta	able 19.														
	0 n 1 y	Nb analysis i	s allo	wed, u	ınless	speci	ficall	y reques	ted.							

6.1.2 The content of residual elements in steel shall comply with the provisions of Table 19.

group	smelting		Chemi great	cal composition (mass ter than	fracti	ion) /9	6. Not	
	process	Р		S		Cu	Cr	Ni
1	arc furnace	High-grade, high- quality non-alloy tool steel	0.030	High-grade, high- quality non-alloy tool steel	0.020			
		Other steel	0.030	Other steel	0.030			
2	Electric arc furnace ten vacuum degassing	Cold mold steel High-grade, high- quality non-alloy tool steel	0.030	Cold mold steel High-grade, high- quality non-alloy tool steel	0.020	0.25	0.25	0.25
		Other steel	0.025	Other steel	0.025			
3	Electric arc arc remelting (VAR)	0.025		0.010				
Fo	r the manufacture of	lead bath quenching n	on-all	oy tool steel wire, t	ne resi	dual c	hromiu	m

Table 19 Content of residual elements in steel

For the manufacture of lead bath quenching non-alloy tool steel wire, the residual chromium content in the steel is not more than 0.10%. Nickel content not greater than 0.12% • Copper content not greater than 0.20%. The sum of the three is not greater than 0.40%.

6.1.3 After negotiation, lead, arsenic, tin, antimony, bismuth, hydrogen, oxygen, nitrogen and other elements may be tested, and the specific requirements shall be specified in the contract.

6.2 Smelting method

Steel shall be smelted by electric arc furnace, electric arc furnace + vacuum degassing, electric arc furnace + electric slag remelting, vacuum arc remelting (VAR) and other methods to meet the requirements, and the specific smelting method shall be indicated in the contract.

6.3 Delivery status

6.3.1 Tool steel is generally delivered in annealing state, but SM45, SM50, SM55, 2Cr25Ni2OSi2 and 7 Mn_1 5Cr2Al3V2WMo steel is generally delivered in hot rolling or hot forging state, and non-alloy tool steel can be annealed by cold pull. 6.3.2 According to the requirements of the demander and indicated in the contract, plastic, hot, cold and special purpose molds can be delivered in pre-hardening state.

6.4 Delivery Hardness

6.4.1 The hardness value of the delivery state steel and the quenching hardness value of the test sample shall comply with the provisions of Table 20 to Table 27. If the supplier can guarantee that the quenching hardness value of the test sample conforms to the provisions of Table 20° Table 27, no inspection can be made.

6.4.2 The annealed steel with less than 5 mm shall not undergo hardness test. According to the requirements of the demander, stretching or other tests can be conducted, and the technical indicators shall be stipulated by the two parties through negotiation.

	н		The		Resquing hard	ness of sample
orde r numb er	Unifi ed numbe r, the word code name	the name of a shop	hardness of steel HBW, not greater than	hardeni ng temp erat ure ℃	coolant	Rockwell hardness HRC is not less than
1-1	To0070	Τ7	187	800~820	water	62
1-2	T00080	T8	187	780~800	water	62
1-3	T01080	T8Mn	187	780~-800	water	62
1-4	T00090	Т9	192	760~780	water	62

Table 20 Hardness value of non-alloy steel for blade mold and quenching hardness value of test sample

			Annealing		Resquing hard	ness of sample
order numbe r	Unifi ed numbe r, the word code name	the name of a shop	delivery status Steel hardness HBW. Not greater than	hardeni ng temp erat ure ℃	coolant	Rockwell hardness HRC, not less than
1-5	T00100	T10	197	$760 \sim 780$	water	62
1-6	To0110	T11	207	$760 \sim 780$	water	62
1-7	To0120	T12	207	$760 \sim 780$	water	62
1-8	To0130	T13	217	760~780	water	62
Th	e hardness o	f steel of non-a	lloy tool shall not	be greater than	HBW241.	

Table 20	(continued	d)
----------	------------	----

Table 2 1 Hardness value of steel delivery state and quenching hardness value of test samples

	н.:с:		Annealing		Resquing hardr	ness of sample
orde r numb er	Unifi ed numbe r, the word code name	the name of a shop	delivery status Steel hardness HBW	hardeni ng tempe ratur e℃	coolant	Rockwell hardness HRC is not less than
2-1	T31219	9SiCr	197~241"	820~860	oil	62
2-2	T30108	8MnSi	≤229	800~820	oil	60
2-3	T30200	Cr06	187~-241	780~810	water	64
2-4	T31200	Cr2	$179^{\sim}229$	830~-860	oil	62
2-5	T31209	9Cr2	$179^{\sim}217$	820~850	oil	62
2-6	T30800	W	$187 \sim 229$	800~830	water	62
	A 1					. 1 1.0

According to the demander's requirements. And indicate in the contract that the steel used for manufacturing the thread blade is HBW187~HBW229.

Table 22 Hardness value of steel delivery state for impact resistant tools and quenching hardness value of test specimens

	н.:с:		Annealing		Resquing hardn	ess of sample
order numbe r	Unifi ed numbe r, the word	the name of a shop	delivery status Steel hardness HBW	hardeni ng tempe ratur e℃	coolant	Rockwell hardness HRC is not less than

	code					
	name					
3-1	T40294	4CrW2Si	179~217	860~900	oil	53
3-2	T40295	5CrW2Si	$207^{\sim}255$	860~900	oil	55
3-3	T40296	6CrW2Si	229~-285	860~900	oil	57
				667°C± 15°C to	o preheat.885℃	
3-4	T40356	6CrMnSi2MolVa	≤229	(salt bath) or		58
				900℃ (furnace	controlled	
				atmosphere) \pm 6	S°C heating.	
				Heat insulation	for 5 min ⁻¹⁵	
				min oil cooling.	58°C 201°C	
				tempering		
				667℃± 15℃ to	preheat.941°C	
3-5	T40355	5Cr3MnSiMolVa	≤235	(salt bath) or 9	55℃ (furnace	56
				controlled atmos	phere) ± 6°C	
				heat, insulation	5min ~15 min	
				oil cooling.56℃	~204°C	
				tempering		
3-6	T40376	6CrW2SiV	≤225	870~910	oil	58
	Note: The i	nsulation time r	efers to the time of	the sample afte	r reaching the h	eating
	temperature.					
	Samples were	e kept for 5 min	in a salt bath. For	5 min to 15 min	in furnace contr	olled
	atmosphere.					

			Annealing	Resquing hardness of sample			
order numbe r	Unifi ed numbe r, the word code name	the name of a shop	delivery status Steel hardness HBW	hardeni ng tempe ratur e ℃	coolant	Rockwell hardness HRC is not less than	
4-1	T42239	9Cr2V	≤229	830~-900	air	64	
4-2	T42309	9Cr2Mo	229	830~900	air	64	
4-3	T42319	9Cr2MoV	≤229	880~-900	air	64	
4-4	T42518	8Cr3 NiMoV	≤269	900~920	air	64	
4-5	T42519	9Cr5 NiMoV	≤269	930~950	air	64	

Table 23 Hardness value of steel and quenching hardness value of test samples

Table 24 Hardness value of steel for cold mold and quenching hardness value of test sample

			Annealing	Resquing hardness of sample			
orde r numb er	Unifi ed numbe r, the word code name	the name of a shop	delivery status Steel hardness HBW	hardeni ng tempe ratur e℃	coolant	Rockwell hardness HRC is not less than	
5-1	T20019	9Mn2V	≤229	780~810	oil	62	
5-2	T20299	9CrWMn	$197 \sim 241$	800~-830	oil	62	
5-3	T21290	CrWMn	$207 \sim 255$	800~-830	oil	62	
5-4	T20250	MnCrWV	≤255	790~-820	oil	62	
5-5	T21347	7CrMn2Mo	≤235	820~870	air	61	
5-6	T21355	5Cr8MoVSi	≤229	1000~1050	oil	59	
5-7	T21357	7CrSiMnMoV	≤235	870°C ~900°C oil cooled or air cooled.150°C± 10°C return air cooling		60	
5-8	T21350	Cr8Mo2SiV	≤255	1020~1040	0il or air	62	
5-9	T21320	Cr4W2MoV	≤269	960 ~ ~ ~ 980 or 1020~1040	oil	60	
5-10	T21386	6Cr4W3Mo2VNb	≤255	1100~-1160	oil	60	
5-11	T21836	6W6Mo5Cr4V	≤269	1180~1200	oil	60	

5-12	T21830	W6Mo5Cr4V2"	≤255	730℃ ~810℃ preh Control the atmospheat preservation oil cooling 540℃ ~560℃ te bath or contro	eat.1210℃ ~1230℃ (salt bath or phere) heating, for 5 min~15 min, empering twice (salt ol atmosphere). Each time 2h	64 (salt bath) 63 (furnace- controlled atmosphere)
5-13	T21209	Cr8	≤255	920~980	oil	63
5-14	T21200	Cr12	217~269	950~-1000	oil	60
5-15	T21290	Cr12W	≤255	950~980	oil	60
5-16	T21317	7Cr7Mo2V2Si	≤255	1100~1150	0il or air	60
5-17	T21318	Cr5MolV#	≤255	790℃± 15℃ to preheat.940℃ (salt bath) or 950℃ (Furnace-controlled atmosphere) ± 6℃ for heating.5 min~		60
				0il cooled for 15 return once, 2 h	min: 200℃± 6℃	
5-18	T21319	Cr12MoV	207~255	950~1000	oil	58

			Annealing	Resquing hardness of sample				
order numbe r	Unifi ed numbe r, the word code name	the name of a shop	delivery status Steel hardness HBW	hardeni ng tempe ratur e °C	coolant	Rockwel 1 hardness HRC is not less than		
5-19	T21310	Cr12MoIVI	≤255	820°C± 15°C to preheat.1000°C (salt bath) ± 6°C or 1010°C (furnace controlled atmosphere) ± 6°C heating.keep warm For 10 min~20 min of air cooling.200°C± 6°C return-fire once.2		59		
	Note: The insulation time refers to the time of the sample after reaching the heating temperature.							
	Samples were kept for 5 min in a salt bath. For 5 min to 15 min in furnace controlled atmosphere.							
	The sample was kept for 10 min in the salt bath and 10 min 20 min in the furnace-controlled atmosphere.							

Table 24 (Cont.)

Table 25 Hardness	value of	steel	for ho	t molds	and	quenching
hardness value of	sample					

			Annealing	F	sample	
orde r numb er	Unifi ed numbe r, the word code name	the name of a shop	delivery status Steel hardness HBW	hardeni ng temp erat ure ℃	coolant	Rockwel l hardn ess HRC
6-1	T22345	5CrMnMo	197~241	820~850	oil	b
6-2	T22505	5CrNiMo	197~241	830~860	oil	b
6-3	T23504	4CrNi4Mo	≤285	840~870	0il or air	b
6-4	T23514	ICr2NiMoV	≤220	910~960	oil	h
6-5	T23515	5CrNi2MoV	≤255	850~880	oil	b
6-6	T23535	5Cr2NiMoVSi	≤255	960~1010	oil	b
6-7	T12208	8Cr3	207~255	850~880	oil	b
6-8	T23274	4Cr5W2VSi	≤229	1030~1050	0il or air	b
6-9	T23273	3Cr2W8V	≤255	1075~1125	oil	b

6-10	T23352	4Cr5MoSiV	≤229	790℃± 15℃ to pro bath) or 1020℃ (Furnace controlled 1020℃± 6℃ heated 15 min of oil cooling tempering and temperi 2 h	b				
6-11	T23353	4Cr5MoSiVI″	≤229	790℃± 15℃ to p bath) or 1010℃ atmosphere) ± 6 preservation for cooling.550℃± 6℃ for 2 h	reheat.1000°C (salt (furnace-controlled °C heating, heat 5 min~15 min oil C tempering twice				
6-12	T23354	4Cr3Mo3SiV	≤229	790℃± 15℃ to pr bath) or 1020℃ (Furnace controlled 1020℃± 6℃ heated 15 min of oi te					
6-13	T23355	5CrIMo3SiMnVA1	≤255	1090~1120	air	t			
6-14	T23364	4CrMnSiMoV	≤255	870~930	oil	h			
6-15	T23375	5Cr5WMoSi	≤248	990~1020	oil	b			
6-16	T23324	4Cr5MoWVSi	≤235	1000~1030	0il or air	b			
6-17	T23323	3Cr3Mo3W2V	≤255	1060~1130	oil	h			
	н		Annealing	Resquing hardness of sample					
--	--	-----------------------	--	---	------------	-------------------------------------	--	--	--
order numbe r	Unifi ed numbe r, the word code name	the name of a shop	delivery status Steel hardness HBW	hardeni ng temp erat ure ℃	coolant	Rockwel l hardn ess HRC			
6-18	T23325	5Cr4W5Mo2V	≤269	1100~1150	oil	b			
6-19	T23314	4Cr5Mo2V	≤220	1000~1030	oil	b			
6-20	T23313	3Cr3Mo3V	≤229	$1010 \sim 1050$	oil	b			
6-21	T23314	4Cr5Mo3V	≤229	1000~1030	0il or air	b			
6-22	T23393	3Cr3Mo3VCo3	≤229	$1000 {\sim} 1050$	oil	b			
Note: The insulation time refers to the time of the sample after reaching the heating temperature.									
	"The sample was kept in the salt bath for 5 min: 5 min ~ -15 min in the furnace-controlled atmosphere. According to the demander's requirements. And is indicated in the contract. Measured values can be provided.								

Table 25 (continued)

Table 26 Hardness value of steel for plastic mold and quenching hardness value of test samples

orde	Unifi	the name	Steel har delivery	dness of the state	Resquing hardness of sample		
r numb er	ed numbe r, the word code name	of a shop	Annealing hardness, HBW. Not greater than	Pre- harden ing of the hardne ss of the HRC	hardeni ng tempe ratur e ℃	coolant	Rockwell hardness HRC is not less than
7-1	T10450	SM45	Hardness of hot roll delivery state 155~215				
7-2	T10500	SM50	Hardness of hot roll deliverv state 165~225				
7-3	T10550	SM55	Hardness of hot roll delivery state 170~230				
7-4	T25303	3Cr2Mo	235	$28^{\sim}36$	850~880	oil	52
7-5	T25553	3Cr2MnNiMo	235	30~36	830~870	0il or air	48
7-6	T25344	ICr2Mn1 MoS	235	28~36	830~870	oil	51
7-7	T25378	8Cr2MnWMoVS	235	40~48	860~900	air	62

7-8	T25515	5CrNiMnMoVSCa	255	$35{\sim}45$	860~920	oil	62
7-9	T25512	2CrNiMoMnV	235	30~38	850~-930	0il or air	48
7-10	T25572	2CrNi3MoAl		38~43			
7-11	T25611	1 Ni3MnCuMoAl		38~42			
7-12	A64060	06Ni6CrMoVTiAl	255	43~48	850°C ~880°C solid solution, oil or air cooling 500°C ~540°C aging. Empty cold		actual measurem ent
7-13	A64000	00Ni18Co8Mo5TiA 1	protocol	protocol	805°C ~825°C solid solution, air cooling 460°C ~530°C aging, air cooling		protocol
7-14	S42023	2Cr13	220	30~36	1000~1050	oil	45
7-15	S42043	4Cr13	235	$30 \sim 36$	1050~1100	oil	50
7-16	T25444	4Cr13NiVSi	235	30~36	1000~1030	oil	50
7-17	T25402	2Cr17Ni2	285	28~32	1000~1050	oil	19
7-18	T25303	3Cr17Mo	285	33~38	1000~-1040	oil	46

GB/T 1299-2014

orde	Unifi	the name of a shop g h H g t	Steel hardness of the delivery state		Resquing hardness of sample		
r numb er	ed numbe r, the word code name		Annealin g hardness, HBW. Not greater than	Pre- harden ing of the hardne ss of the HRC	hardeni ng temp erat ure ℃	coolant	Rockwell hardness HRC is not less than
7-19	T25513	3Cr17NiMoV	285	33~38	$1030 \sim 1070$	oil	50
7-20	S44093	9Cr18	255	protocol	1000~1050	oil	55
7-21	S16993	9Cr18MoV	269	protocol	1050~1075	oil	55

Table 26 (continued)

Table 27 Hardness value of steel for special use molds and quenching hardness value of test samples

ordor	Unifi	the name of	Steel hardness of the delivery state	Resquing hardness of sample				
numbe r	ed numbe r, the word code name	a shop	Annealing hardness of HBW	heat treating regime	Rockwell hardness HRC is not less than			
8-1	T26377	7Mn15Cr2A13V2WMo		1170°C ~1190°C solid solution • water cooling 650°C ~700°C aging • air cooling	45			
8-2	S31049	2Cr25Ni20Si2	_	1040℃ ~1150℃ solid solution, water or air cooling				
8-3	S51740	0Cr17NiICuINb	protocol	1020℃ ~1060℃ solid solution, air cooling 470℃ ~630℃ aging. Empty cold				
8-4	H21231	Ni25Cr15Ti2MoMn	≤300	950℃ ~980℃ solid solution, water or air cooling 720℃ + 620℃ aging • air cooling				
8-5	H07718	Ni53Cr19Mo3TiNb	≤300	980℃ ~1000℃ solid solution • water, oil or air cooling 710℃ ~730℃ aging. Empty cold				
Ac	According to the demander's requirements. And indicated in the contract, can provide the							

According to the demander's requirements. And indicated in the contract, can provide the measured value.

6.5 low-fold tissue

6.5.1 Steel shall test the acid-dip low tissue, with no visible shrinkage holes, inclusions, layers, cracks, bubbles and white spots on the acid-dip low test piece. The central loose and ingot segregation shall be shown in Figure A in Appendix A respectively.1 and Figure A.2. The qualification level shall meet the following requirements:

A) The center loose and ingot shape segregation of round steel and square steel are specified according to the 2 groups in Table 28;

B) Loose and ingot gregation of flat steel center according to the 2 groups in Table 29;

C) According to the requirements of the Demander, the supplier shall be supplied in Table 28 or 1 group in Table 29.

	Gr	oup 1	Group 2				
Steel diamete	center porosity	telome theory	center porosity	telome theory			
r or	Level, not greater than						
side							
length							
of mm							
≪80	2.0	2.0	3.0	3.0			
>80~150	2.5	3.0	3.5	3.0			
>150~250	3.0	3.0	4.0	4.0			
>250~100	3.5	3.0	4.5	4.0			
>400	protocol	protocol	protocol	protocol			

Table 28 Low power defects and qualified grades of round steel and square steel

Steel		Gi	coup 1	Group 2		
		center porosity	telome theory	center porosity	telome theory	
	knes s of mm	Level, not greater than				
	≤60	3.0	3.0	4.0	4.0	
Hot	60~120	3.5	3.0	4.5	4.0	
roll ed flat stee l	>120	protocol	protocol	protocol	protocol	
	160~250	3.0	3.0	4.0	4.0	
For	>250~400	3.5	3.0	4.5	4.0	
gin g fla t ste el	>400	protocol	protocol	protocol	protocol	

Table 29 Low power defect of flat steel and its qualification level

6.5.2 Upon the agreement between both parties and indicated in the contract, the low steel quality organization can be inspected by GB / T 1979, and the qualification level shall be determined by both parties through negotiation.
6.5.3 After the agreement between both parties and indicated in the contract, the low power organization of electroslag remolten steel can be inspected by ASTM A604, and the qualified level shall be determined by the supply and demand parties through negotiation.

6.6 Microscopic tissues

6.6.1, pearlosome organization

6.6.1.19SiCr, Cr 2, Cr 06, 9 Cr 2, W, 9CrWMn, Cr WMn, and 7CrMn2Mo steel for annealing state. As shown in Figure A.3 Evaluation, its qualified level is level 1 ~5. According to the requirements of the demander and indicated in the contract, the 9SiCr annealed steel body used for the manufacturing thread blade is grade 2 ~4.
6.6.1.2Non-alloy tool steel with a section size of no more than 60 mm shall be tested for annealing delivery. As shown in Figure A.4. Evaluation, and the qualification level shall comply with the provisions of Table 30. According to the

requirements of the demander, non-alloy tool steel with section size of more than 60

mm. The qualification level shall be determined by the supply and demand parties through negotiation.

the name of a shop	Qualified level, level		
T7. T8、T8Mn. T9	1~5		
T10, T11、T12、T13	2~4		

Table 30 Qualification level of non-alloy tools

6.6.1.3Beite organization is not tested for thermal pressure processing.

6.6.2, mesh carbide

6.6.2.19SiCr, Cr 06, Cr 2 and CrWMn steel delivered in the annealed status shall test the mesh carbide, as per Figure A.5 Evaluation, its qualification level shall comply with the following provisions:

 A) Steel with section size not greater than 60 mm is not greater than grade 3; according to the requirements of the demander and indicated in the contract, 9SiCr steel for manufacturing thread blade is not greater than Grade 2:

B) Flat steel and steel with a section size greater than 60 mm shall be determined by the supply and demand parties through negotiation.

6.6.2.2Non-alloy tool steels (except T7 and T8) delivered in annealed status shall be tested for mesh carbide. As shown in Figure A.6. The qualification level shall comply with the provisions of Table 31.

Steel nominal size / mm	Qualified level, not greater than / level
≤60	2
>60~100	3
>100	protocol

Table 31 Qualification grade of non-alloy tools

6.6.2.3T7, T8 non-alloy tool steel and thermal pressure processing steel do not test the mesh carbide.

6.6.3 Eutectic carbide inhomogeneity

6.6.3.1 Cr8Mo2VSi, 6Cr4W 3Mo2VNb, 6W6Mo5Cr4V, W6Mo5Cr4V2, Cr 8, Cr 12, for annealing status delivery

Cr12W, Cr12MoV and Cr12MoIV1 steel shall test the inhomogeneity of eutectic carbide and be assessed according to the fourth rating chart of GB / T 14979-1994 standard, and their qualification level shall comply with the provisions of the 2 groups in Table 32. As required by the demander and indicated in the contract. Can be supplied in 1 group.

Steel	Cocrystalline carbide inhomogeneity is qualified level			
diamete	Group 1	Group 2		
r or	Level, not greater than			
side				
length				
of mm				
≪50	3	4		
>50~70	4	5		
>70~120	5	6		
>120~400	6	protocol		
>400	protocol	protocol		
The qualified level of flat stee	al shall be determined by the	e supply and demand parties throug		

Table 32 Qualified grade of cold-made die steel

6.6.3.26Cr4W3Mo2VNb Steel may not be tested when the supplier guarantees that this requirement is met.

6.7 Nonmetallic inclusions

6.7.1 Non-metallic inclusions of electroslag reused steel shall be tested and rated according to the A method of GB / T 10561- -2005, and the result shall comply with the provisions of Group 1 in Table 33.

 $6.\,7.\,2$ Non-metallic inclusions of vacuum degassing steel shall be tested and rated according to the A method of GB / T 10561- -2005, and the results shall comply with Group 2 specified in Table 33.

6.7.3 According to the requirements. Other steels may be tested for non-metallic inclusions. The qualification level shall be determined by the supply and demand parties through negotiation.

	Gr	oup 1	Group 2		
Category of nonmetallic	Fine department	The coarse department	Fine department	The coarse department	
inclusions	Level, not greater than				
A "	1.5	1.5	2.5	2.0	
В	1.5	1.5	2.5	2.0	

Table 33 Qualification level of nonmetallic inclusions

	Gr	coup 1	Group 2		
Category of nonmetallic	Fine department	The coarse department	Fine department	The coarse department	
inclusions		leve	1. Not greater than		
С	1.0	1.0	1.5	1.5	
D	2.0	1.5	2.5	2.0	
According to the demander's requirements. DS class nonmetallic inclusions can be tested. The qualification level shall be determined by the supply and demand parties through negotiation.					
"4Cr 2MnIMoS, 8Cr 2MnWMoVS and 5CrNiMnMoVSCa easy to cut plastic mold steel does not test class A inclusions.					

Table 33 (Cont.)

6.8, and the decarbonization layer

6.8.1 The total decarbonization layer (ferrite + transition layer) on one side of the hot rolled and forged steel shall comply with the provisions of Group 2 in Table 34. According to the requirements of the demander, the parties agree and the contract can be supplied in 1 group.

Table 34 Total decarbonization layer depth of hot-rolled and forged steelUnit is mm

Steel diameter or side	Total decarburization depth, not greater than			
length	Group 1	Group 2		
5~150	0.25+1%D	0.20+2%D		
>150	agreement between two sides			
Note: D is the nominal size of the steel section.				

6.8.2 The total depth of the decarbonization layer on one side of the cold-pulled steel shall comply with the provisions of Table 35.

Table	35	The	total	depth	of	decarbonization	layer	of	cold-pulled	steel	is	mm
-------	----	-----	-------	-------	----	-----------------	-------	----	-------------	-------	----	----

Steel	divide into groups	Total decarbonization bed depth. Not greater than			
	16 mm	1.5%D			
Non-alloy tool steel	>16 mm	1.3%D			
	High frequency quenching	1.0%D			
other	Do not contain silicon steel	Of 1.5% of the nominal size			
	Silicon steel	Of 2.0% of the nominal size			
Note: D is the nominal size of the steel section.					

6.8.3 According to the requirements of the demander, the decarbonization layer of the flat steel can be tested, and the specific requirements shall be determined by the supply and demand parties through negotiation.

6.8.4 No decarbonization layer is allowed on the surface of silver bright steel.

The decarbonization layer of 6.8.5 6W6Mo5Cr4V, 4Cr3Mo3SiV and 3Cr3Mo3W2V steel shall be determined by the supply and demand parties through negotiation.

6.8.6 7Mn15Cr2Al3V2WMo Steel without magnetic mold does not test the decarbonization layer.

6.9 Relative magnetic permeability

The relative permeability of steel for 7Mn15Cr2Al3V2WMo non-magnetic die shall be less than 1.01. When the supplier guarantees to meet this requirement, it may not be met

GB/T 1299-2014

To test.

6.10, detected by ultrasound

6.10.1 Steel shall be ultrasonic tested according to GB / T 6402, and metallurgical defects such as white spot, slag inclusion, stratification, internal crack and shrinkage hole are not allowed inside.

6.10.2 The size classification and quantity level of the allowable limit value are specified in Table 36 and Table 37 respectively, and the eligibility level shall meet the provisions of Group 2 in Table 38. However, high quality steel such as electroslag remolten steel shall comply with the provisions of 1 group.

6.10.3 The qualified level of ultrasonic testing of special purpose die steel shall be determined by both parties through negotiation.

Defect size level	Single defect flat- bottom hole diameter " mm	Continuous defect flat bottom hole diameter mm	Max length mm
А	14	10	80
В	10	7	60
С	7	5	40
D	5	3	30
E	3	2	30

Table 36 Ultimate values of allowable defect dimensions

"Based on the defect size level required by the order, the distance of a single defect diameter shall be greater than or equal to 5 times the required flat-bottom hole diameter, otherwise, the defect shall be considered a continuous defect.

The stage difference of the defect size shall be the amplitude of 6 dB.

If the maximum continuous defect length exceeds the standard level. An additional quantity level may be considered. For example, if the continuous length is 160 mm A, the quantity level is 160:80=2.

Table 37 Ultimate values of the number of defects allowed by ultrasound detection

Defect quantity level	Number of individual defects	Number of continuous defects
	number	r. Not greater than
a	32	16
b	16	8
С	8	4
d	4	2
e	2	1

Table 38 Eligibility level for ultrasound testing

Steel diameter,	Qualified level				
side	Group 1	Group 2			
length, or					
thickness					
of mm					
≤150°	E/e	E/d			
>150~250	E/d	D/d			
>250~400	D/d	C/e			
>400	C/e	B/b			
On the premise that the supplier meets the requirements. It can be replaced with a blank material or without ultrasonic detection.					

6.11, and the surface quality

6.11.1 Hot rolled and forged steel used for pressure processing shall not have visually visible cracks, folding, scars and inclusion. In case of the above defects, they shall be removed and the removal depth shall comply with the provisions of the steel starting from the actual size of Table 39. The clearance width is not less than 5 times the depth. Other minor surface defects with depth within half of the tolerance may not be cleared.

Steel diameter, side length, thickness, or width	The lowed defect clearance depth is not greater than
<80	Half the difference
80~140	common difference
>140	4% of the steel cross-section size

Table 39 Surface quality requirements of steel used for pressure processingUnit is mm

6.11.2 For hot rolled and forged steel for cutting, the surface shall have the local defects from the depth specified in Table 40. However, the minimum size of the steel shall be guaranteed.

Table 40 The surface quality of cutting steel is required in millimeters

Steel diameter, side length, thickness, or width	Local defect is allowed in depth, not greater than
<80	Half the difference
>80	common difference

6.11.3 The surface of cold-pulled steel shall be clean and smooth, without cracks, folding, scarring, inclusion and oxide skin, and shall comply with the following provisions:

A) Cold pulled steel with size precision h9 and h10 with no defects on the surface:

B) Cold-pulled steel with dimensional accuracy of hll class and hl2 class. The surface is allowed to have minor surface defects such as hemp points, individual scratches, hair lines, concave surfaces, black spots, cracks and lubricant traces of the nominal size tolerance calculated from the actual size: according to the requirements of the demander, and indicate in the contract, the allowable depth of the defects shall not be greater than half of the nominal size tolerance;

C) Heat treated cold pulled steel with oxidation color or slight oxide layer on the surface.

6.11.4 The surface of silver bright steel shall comply with the provisions of GB / T 3207- -2008.6.11.5 The surface of the steel delivered by machining shall be clean and smooth, without cracks, folding, scarring and oxide skins. If the above defects exist, partial grinding shall be allowed, but the minimum size of the steel shall be guaranteed.

6.12, special requirements

According to the requirements of the demander, the parties agree and indicate in the contract. The following inspection items may be added: A) Special chemical composition;

- Bin) Special hardness value:
- C) Special size and its allowable deviation;
- d) grain size:
- e) quenching degree:
- And f) Other requirements.

7 Test method

The inspection items and test methods of each batch of steel shall comply with the provisions in Table 41.

GB/T 1299-2014

8 Inspection rules

8.1 Inspection and acceptance

The quality of steel shall be inspected and accepted by the technical quality supervision department of the supplier. The Demander shall have the right to inspect and accept any inspection items specified in this Standard or the Contract.

8.2 Group and batch rules

8.2.1 The steel products shall be accepted in batches. Each batch of steel shall be composed of steel of the same furnace number, same processing method, same delivery state, same specification and same heat treatment furnace.

8.2.2 Each batch of electroslag remolten steel shall be composed of steel with the same subfurnace number, same processing method, same delivery state, same specification and same heat treatment furnace. Under the condition of stable process and can guarantee the requirements of this standard. The parent furnace number that is allowed to remelt with electric slag, but the chemical composition shall be 1 according to each sub-furnace number, and other items shall be executed according to the provisions of electric arc furnace steel sampling.

8.3 Samquantity and sampling site

The sampling quantity and sampling parts of the steel shall comply with the provisions of Table 41.

		Sa	mpling quantity"		
orde r numb er	inspecting item	Electric arc furnace steel vacuum degassing steel	Electroslag refused steel vacuum arc remelting (VAR) steel	sampling location	experimental method
1	chemical composition	One furnace per furnace	One furnace per furnace	GB/T 20066	GB / T 223 (see Chapter 2), GB/T 4336、GB/T 11261 、GB/T 20123、GB/T 20124
2	Delivery hardness	5% • 5 bra	and no less than anches	On different roots of steel	GB/T 231.1
3	Hardness of sample	2	1	Electric arc furnace steel or vacuum degassing steel: different root steel	GB/T 230.1

Table 41	Details of	inspection	items,	sampling	parts,	sampling
quantity	and test me	ethods of st	teel			

				Electroslag refused steel or vacuum arc refused steel: any single steel	
4	macrostruct ure	2	1	Ararc furnace steel or vacuum degassing steel: equivalent to the ingot head of different billet or steel Electroslag refused steel or vacuum arc refused steel: equivalent to the billet or steel on the head of the ingot	GB / T 226. Appendix AGB / T 1979 or ASTM A604
5	pearlitic structrure	2	1		GB / T 13298. Appendix A
6	net carbide	2	1	Electric arc furnace steel or vacuum	GB / T 13298. Appendix A
7	eutectic carbide unevenness	2	Ι	degassing steel: different root steel Electroslag refused	GB/T 13298 GB/T 14979—1994
8	non-metallic inclusion	2	1	steel or vacuum arc	GB/T 10561—2005
9	decarburiz ed layer	2	1	single steel	GB/T 224

		S	ampling quantity				
order numbe r	inspecting item	Electric arc furnace steel vacuum degassing steel	Electroslag refused steel vacuum arc remelting (VAR) steel	sampling location	experimental method		
10	relative permeability			On any steel	GJB 937—1990		
11	grain size			On any steel	GB/T 6394		
12	quenching degree	1	1	On any steel	GB / T 225 or Appendix B		
13	ultrasonic inspection and measurement	To the root	To the root	On the whole steel	GB/T 6402		
14	surface quality	To the root	To the root	On the whole steel	visual		
15	size	To the root	To the root	On the whole steel	Caliper, thousand feet		
‴Wh	"When the delivered quantity is less than the sampled quantity, sample sample by sample. For large gauge steel, non-metallic inclusions can be inspected on a diameter of 90						

Table 41 (Renewal)

 mm^{120} mm; the inspection method may be specified in the contract.

8.4 Reinspection and judgment rules

8.4.1 Steel reinspection and judgment rules shall follow GB / T 17505.

8.4.2 If the supplier can ensure that the steel is qualified, the test results of the steel or the bad inferior tissue, non-metal inclusions and sample quenching hardness of the same furnace number are allowed to be replaced with bad, with large for small.

9 Packaging, marking and quality certificate

The packaging, marking and quality certificate of the steel shall comply with the provisions of GB / T 2101.

appendix A (Normative appendix) Standard rating chart

A.1 First-level graph for lower-power tissue

A.1.1 Center loose standard rating chart is shown in Figure A.1. $\,$

Level 1

Level 2

graph A.1 Center loose standard rating chart

GB/T 1299—2014

graph A.1 (continued)

A.1.2 Standard rating chart see Figure A.2. $\,$

Level 1

graph A.2 ingot type segregation standard rating chart

graph A.2 (continued)

GB/T 1299—2014

Level 5

graph A.2 (continued)

GB/T 1299-2014

A.2 Second level diagram, pearlessome organization

A.2.1 Standard rating chart for optical body organization of alloy tool steel beads is shown in Figure A.3.

graph A.3 Standard rating diagram of alloy tool

A.2.2 Standard rating chart for optical body organization of non-alloy tools, see Figure A.4 $\,$

Level 1

Level 5

Level 2

Level 4

Level 6

explain:

The visual field diameter is 65 mm. The 100 m represents the 10 mm.

graph A.4 Standard rating diagram of non-alloy tools

GB/T 1299-2014

A.3 Third level diagram, mesh carbide

A.3.1 Standard rating chart for mesh carbide of alloy tool steel is shown in Figure A.5.

Level 3 explain: The visual field diameter is 80 mm 100

The visual field diameter is 80 mm.100 $\,\mu$ m represents 10 mm.

graph A.5 alloy tool steel mesh carbide standard rating diagram

A.3.2 Standard rating chart for steel mesh carbide of non-alloy tools is shown in Figure A.6.

explain: The visual field diameter is 65 mm.100 am represents 10 mm.

Appendix B (Normative Annex) Test method for quenability of non-alloy tools

B.1 Principle

The sample is heated to the quenching temperature, quenching after insulation, and then the sample is interrupted from the middle to measure the quenching depth in the cross section.

B.2 Symbols and instructions

The symbol is described in Table B.1.

outside B.1 Symbolic description

symbol	explain	unit
L	Total length of sample	mm
D	The diameter of the sample	mm
Н	The trough depth of the sample	mm
Т	Quenched medium temperature	Ċ
e zCs;	The depth of the black zone on the back end surface	mm
е	Quenched depth	mm

B.3 The sample

B.3.1 Preparation of sample blanks

The specimen shall be able to show complete sections of ingot, billet and steel. If necessary, it can be forged into a diameter of 25mm. Take the sample blank according to the sample location of GB / T 225.

B.3.2 Pretreatment of the sample billet

B.3.2.1 The steel delivered by normal ignition or annealing shall not be pretreated when the sample is broken.

B.3.2.2 The forged or rolled samples can be ignition or annealing, and the treatment conditions are determined according to the recommended process of the corresponding products.

B.3.2.3 The billet can also be adjusted, the quenching temperature is $870^{\circ}C \pm 10^{\circ}C$, and quenched into oil after insulation. Then were then kept at $625^{\circ}C$ to $650^{\circ}C$ for 1 h and cooled in stationary air.

B.3.3 Preparation of test samples

The sample is processed by the lathe into round rod samples of diameter of 20 mm \pm 0.5 mm and length of 75mm \pm 0.5 mm (see Figure B.1) . If the steel sample cannot be processed into standard due to the limitation of the size, the small sample can be made and the sample size shall be indicated.

graph B.1. Schematic diagram of the test sample

B.4. Test method

B.4.1 Heat quenching of the sample

Heating is best done in a salt bath, lead bath or a furnace with a controlled atmosphere to prevent decarbonization and oxidation of the sample surface. It can also be done in a box-type electric furnace.

The quenching and thermal insulation time is determined according to the furnace type. The uniform heating shall be guaranteed. Generally, ranging from 10 min to 30 min.

The quenching medium is a 10% sodium chloride aqueous solution of no less than 200 L. The temperature was $20^{\circ} \text{C} \pm 10^{\circ} \text{C}$.

After heating, the sample should be quickly put into the medium without stirring to ensure uniform quenching until complete cooling.

B.4.2 Preparation of sample section

Sute the cleaned and dried specimens. The groove depth is $1.5 \text{ mm}^2 2 \text{ mm}$. The specimen can be broken by bending or bumping on the back of the slot by other physical methods. But it should not produce thermal effects.

The breaks were ground or polished in 80° C to 85° C containing 50% HH for 3 min. And then rinse with hot water and blow dry.

B.4.3 Determination of the quenching depth

The depth of the steel was determined by measuring the depth of the sample polishing surface in the black area after corrosion. The diameter of the groove (see Figure B.2) . Read number is accurate to 0.25 mm. Athe four numbers:

$$v = \frac{e_1 + e_2 + e_3 + e_4}{1}$$

GB/T 1299-2014

graph B.2. Schematic diagram of the determination of the quenching depth

When the measured value varies from the average of the four measured values by more than 1 mm. The readings are considered irregular and need to be re-ground for the section or re-sampled.

B.5 The results indicate that

The quenching depth results are expressed in millimeters, accurate to 0.5 mm. For tests performed at different quenching temperatures, the results indicate a temperature index in parentheses.

Example: 3.5 (780°C) indicates a quenching temperature of 780°C. The quenching depth was 3.5 mm.4.0 (840°C) indicates a quenching temperature of 840°C. The quenching depth was 4.0 mm.

appendix C (informative annex) The main characteristics and uses of each brand number

The main characteristics and uses of each sign are shown in Table C.1 $^{\sim}$ Table C.7

0

order numbe r	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
1-1	T00070	T7	Sub-analysis steel, with good plasticity, toughness and strength, and a certain hardness. Can withstand the vibration and shock load, but the cutting performance force is poor. For the manufacture of the impact load is not large, and the requirement has the appropriate hardness and wear resistance is extremely good toughness tool
1-2	T00080	Τ8	The quenching property and toughness are better than T10 steel, and the wear resistance is also high, but the quenching heating is easy to overheat, and the deformation is also large. Plastic and strength is relatively low, large and medium section mold easy to residual mesh carbide • suitable for making small pull, stretch, extrusion mold
1-3	T01080	T8Mn	Co-analysis steel, with high quenching and hardness, but lower plasticity and strength. For the manufacture of large section of woodworking tools, hand saw saw blade, engraving, rivets rivet die, coal mine chisel, etc
1-1	T00090	Τ9	Over analysis steel, with higher strength but lower plasticity and strength. It is used to manufacture various tools with high hardness and certain toughness. Such as engraving tools, rivet die, punch, woodworking tools, rock tools and so on
1-5	To0100	T10	Non-alloy tool steel with good performance has high wear resistance and low overheating sensitivity during quenching. High strength and certain toughness can be obtained after appropriate heat treatment, which is suitable for the production of molds with high wear resistance and less impact load
1-6	T00110	T11	The steel has good comprehensive mechanical properties (such as hardness, wear resistance and toughness, etc.), and grows the grain when heating Little sensitivity for the formation of a carbide network. Use for manufacturing constant hot tools of cutting edge at work, such as saw, silk cone, file, scraper, expansion drill, plate teeth, cold punching die and woodworking tool with small size and no sharp change

outside C.1 Main features and uses of steel non-alloy for blade mold

			Over analysis steel, due to the high carbon content. There is still more excess carbide after quenching. So high hardness and wear resistance. But toughness
1-7	T00120	T12	Low, and large quenching deformation. Not suitable for manufacturing high cutting speed and impact load tools, for manufacturing no impact negative
			Charge, cutting speed is not high, cutting blade mouth unchanged hot tools, such
			as car cutter, milling cutter, drill, silk cone, file, scraper, hole expansion
			drill, plate teeth, and section size of small cold cutting edge mold and punching
			mold, etc
			Over co-analysis steel, due to the high carbon content, more excess carbide after quenching, so the hardness is higher, but the toughness is worse, and by
1-8	T00130	T13	The number of carbide increases and the distribution is not uniform. Therefore, the mechanical properties are poor • not suitable for high cutting speed and impact
			Load tools, used to manufacture no impact load, but requires a very high hardness of metal cutting tools, such as razor, scraper, pull
			Silk tools, files, carving tools, and hard rock processing tools and carving tools, etc

outside C.2 The main characteristics and uses of steel for measuring tools

order numbe r	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
2-1	T31219	9SiCr	It has higher quenability and hardening hardness and good tempering stability than chromium steel. Suitable for the manufacture of complex shape, small deformation, high wear resistance requirements, such as drill, thread, manual hinge knife, washboard and rolling wheel, etc.: can also make cold mold (such as punching die, printing mold, etc.).cold roll. Correction roll and slender rods
2-2	T30108	8MnSi	The low alloy tool steel formed by human Si and Mn element is added on the basis of T8 steel. With a high tempering stability, a high Qudenability and wear resistance, heat treatment deformation is also smaller than non-alloy tool steel. Suitable for making woodworking tools, cold punching die and punch, head;: can also make the mold for cold processing
GB/T 1299-2014

order numbe r	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
2-3	T30200	Cr06	Add Cr to non-alloy tool steel. Quenching ability and wear resistance are higher than that of non-alloy tool steel, cold machining plastic deformation and cutting performance is better • Suitable for woodworking tools, can also make simple cold machining mold, such as punching mold, Cold pressure mold, etc
2-4	T31200	Cr2	Add a certain amount of Cr. Qudenability is improved, hardness, wear resistance is also higher than non-alloy tool steel, contact fatigue strength is also high, quenching deformation is small. Suitable for manufacturing woodworking tools, cold punching die and punch, but also used in the production of small and medium size cold As a mold
2-5	T31209	9Cr2	The performance is basically similar to Cr 2 steel, but the toughness is better than Cr 2 steel. Suitable for woodworking tools, cold roll, cold punching die and punch, steel stamping die, etc
2-6	T30800	W	Add a certain amount of W to the non-alloy tool steel foundation. After heat treatment with higher hardness and wear resistance • and overheat sensitivity Small sensibility, small heat treatment deformation, good tempering stability and other characteristics. Suitable for the manufacture of small twist drill, head, can also be used to make silk Cones, files, plate teeth, and tools with low temperature and slow cutting speed

outside C.2 (continued)

outside C.3. Main characteristics and uses of steel for impact -resistant tools

order numbe r	Unifi ed numbe	the name of a shop	Main features and uses
	r,		
	the		
	word		
	code		
	name		
3-1	T40294	4CrW2Si	A certain amount of tungsten added on the basis of chromium silicon steel has certain quenability and high temperature strength. Suitable for manufacturing tools for operating under high impact loads. Such
			as wind tools, cutting edge composite die, punching die, cold cutting
			scissors and other cutting tools. And some of the small hot-making
			molds

3-2	T40295	5CrW2Si	Add a certain amount of tungsten on the basis of chromium and silicon steel. With a certain quenability and high-temperature
			intensity. Suitable for the manufacture of cold shear metal blade,
			rubbing board blade, cold cutting and edge cutting die. And
			woodworking tools for working for a long time
			Add a certain amount of tungsten on the basis of chromium and
3-3	T40296	6CrW2Si	silicon steel. The quenching hardness is higher. There is a certain
			high-temperature intensity. Suitable for manufacturing tools that
			withstand impact load and require high wear resistance, such as wind
			tools, chisels and molds. Cold shear machine blade, cutting edge
			with groove, air hammer tools, etc
			Equivalent to the S5 steel in the ASTM A681. It has high quenching
3-4	T40356	6CrMnSi2MolV	ability and wear resistance and tempering stability, and the
			quenching temperature is low. The use process of mold rarely
			collapse and fracture, so it is suitable for manufacturing tools,
			die punching and cold cutting edge cutting under high impact load
3-5	-5 T40355	5Cr3MnSiMol	Equivalent to the S7 steel in the ASTM A681. Good quenability, with higher strength and tempering stability, integrated
	110000	001000001	high performance. Suitable for manufacturing in high temperature, high impact load working tools, die, can also be used for manufacturing
			Hammer forging mold
			Medium carbon oil quenching type impact resistant cold making tool
3-6	T40376	6CrW2Siv	steel, with good impact resistance and wear resistance performance.
			It also has good fatigue resistance and high dimensional stability.
			Suitable for the production of blades, cold forming tools and
			precision punching die and hot punching tools

order numbe r	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
	T42239	9Cr2V	2% Cr series, high carbon content ensures high hardness: chromium, can increase the permeability of steel: vanadium. It can improve the wear resistance of steel and refine the grain of steel. Suitable for making cold rolling working roll, supporting roll, etc
4-2	T42309	9Cr2Mo	The 2% Cr series. High carbon content ensures high roll hardness. Adding chromium and molybdenum can increase the quenability and wear resistance of steel. This kind of steel has good forging performance, and the control of low final forging temperature and appropriate deformation can refine the grain, eliminate the mesh carbide distributed along the grain boundary, and make it evenly distributed. Suitable for making cold rolling working roll, supporting roller and correction roll
4-3	T42319	9Cr2MoV	The 2% Cr series. But the comprehensive performance is better than the 9 Cr 2 series steel. If the electric slag remelting process is used. Its roll billet performance is better. Suitable for manufacturing cold rolling working roll, supporting roller and correction roller
4-4	T42518	8Cr3NiMoV	3% Cr series, the quenching layer can reach about 30 mm. For cold rolling roll, service life higher than 2% chromium steel
4-5	T42519	9Cr5NiMoV	Namely, MC 5 steel. With high quenability, the hardening layer of the finished roller can reach 35 mm ~40 mm (HSD 85). Good wear resistance, suitable for manufacturing of cold rolling rolls requiring deep hardening layer, poor rolling conditions and high accident resistance

outside C.4 Main characteristics and uses of steel for roll

outside C.5 The main characteristics and uses of steel for cold-making mold

order numbe	Unifi ed numbe	the name of a shop	Main features and uses
	r,		
	the		
	word		
	code		
	name		

5-1	T20019	9Mn2V	High hardness and wear resistance; small deformation during quenching; good quenability. Suitable for manufacturing a variety of precision measuring tools, sample • can also be used for manufacturing small size punching die and cold pressure die, carving mold, drop mold, etc. And the machine tool wire poles and other structural parts
5-2	T20299	9CrWMn	With certain quenching ability and wear resistance • small quenching deformation, uniform carbide distribution and fine particles, suitable for making cold punching die with small section and complex deformation
5-3	T21290	CrWMn	oil-hardening steel. Due to tungsten carbide formation, there is more excess than 9SiCr steel after quenching and low temperature tempering carbide. Higher hardness and wear resistance and better toughness. However, the steel is sensitive to the formation of carbide network, if there is the existence of mesh carbide, the blade of the mold has
			the risk of peeling, so as to reduce the service life of the mold. Steel with carbide mesh must be forged or fired according to its severity. Suitable for making silk cones, plate teeth, reamers, small die, etc
5-4	T20250	MnCrWV	High carbon low alloy oil quenching steel. It has a relatively high quenability. Small deformation of heat treatment.hardness High level, with good wear resistance. Suitable for making steel plate cutting die, cutting knife, drop die, measuring tools and thermosetting plastics
5-5	T21347	7CrMn2Mo	Module et al Empty quenched steel. Small heat treatment deformation • Suitable for making products that need to be close to the size tolerance, such as trim die, plastic die, pressure bending tool, punching die and
			precision pressure die, etc
5-6	T21355	5Cr8MoVSi	ASTM A681 The modified steel type of A8 steel \cdot has good quenability, toughness, heat treatment dimensional stability. Suitable for making hardness in HRC 55 \sim HR C60 punch and cold forging mold. It can also be used to make non-metallic tool materials
5-7	T21357	7CrSiMnMoV	Flame quenching steel. The quenching temperature range is wide, good quenability, air cooling can be quenched. Hardness reaches HRC $62 \sim$ HRC 64. It has easy quenching operation and low cost. Small overheating sensitivity, small air cooling deformation and other advantages • suitable for the production of automobile cold bending mold
5-8	T21350	Cr8Mo2SiV	High toughness, high wear resistance steel • with high quenching and wear resistance, quenching size change and other characteristics, suitable for the production of cold cutting die, cutting die, rolling die, gauge, drawing die, washboard, cold punching die, etc

GB/T 1299-2014

orde r numb er	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
5-9	T21320	Cr4W2MoV	With high quenching permeability, hardening, wear resistance and dimensional stability • suitable for all kinds of punching mold, cold heading mold, drop mold, cold extrusion concave mold and washwire board and other molds
5-10	T21386	6Cr4W3Mo2VNb	Namely, the 65 Nb steel. Niobium is added to improve the strength of steel and improve the process. Suitable for making cold extrusion, thick plate cold flushing, cold heading and other cold making molds bearing large load • It can also be used to make warm extrusion molds
5-11	T21836	6W6Mo5Cr4V	Low-carbon-type, high-speed steel. Lower carbon and vanadium content compared with W6Mo5Cr4V2. With high toughness • used for cold mold steel • mainly used for the production of steel material cold extrusion mold
5-12	T21830	W6Mo5Cr4V2	Tungsten and molybdenum high-speed steel. With high toughness, good thermoplastic, wear resistance, red hard high characteristics.need In cold-making mold steel. Suitable for making all types of tools, large thermoplastic cutting tools: can also be made high Wear-resistant parts under load, such as cold extrusion mold, temperature extrusion mold, etc
5-13	T21209	Cr8	With good quenability and high wear resistance • suitable for making all kinds of cold working die steel with high wear resistance requirements. Better toughness compared to Cr 12
5-14	T21200	Cr12	Equivalent to the D3 steel in ASTM A681, with good wear resistance, suitable for the production of cold punching die, punch, cold shear knife, drilling sleeve, gauge, drawing die, etc
5-15	T21290	Cr12W	ledeburitic steel. It has high wear resistance and quenching ability, but low plasticity and toughness. Suitable for the production of high strength, high wear resistance, and heat not more than 300°C ~400°C, such as steel plate deep tensile die, drawing die, thread washboard, cold punching die, cutting knife, saw blade, etc
5-16	T21317	7Cr7Mo2V2Si	Higher strength and toughness than Cr 12 and W6Mo5Cr4V2 steel, better wear resistance and cold and cold The processing process performance is excellent, and the heat treatment deformation is small. Strong versatility, suitable for production, withstand a high load of cold extrusion mold. Cold heading die, cold punching die, etc

outside C.5 (continued)

5-17	T21318	Cr5MolV	Empty quenched steel. With good air quenching characteristics, wear resistance between high carbon oil quenching mold steel and high carbon high chromium wear resistance mold steel. However, it has good toughness, strong versatility, especially suitable for making good wear resistance and good toughness mold, such as the following material mold and molding mold, roll, punch, calender mold and rolling mold, etc
5-18	T21319	Cr12MoV	ledeburitic steel. With high quenching permeability and wear resistance • small size change during quenching • uniform carbide distribution and high toughness of Cr 12 steel. Suitable for making complex shape of punching die, cold cutting knife, tensile mold, drawing Mold, washboard, cold extrusion mold, measuring tools, etc
5-19	T21310	Cr12MolV1	ledeburitic steel. With high quenability, hardening and high wear resistance: high temperature oxidation resistance, heat treatment Small deformation: suitable for the production of a variety of high precision, long life cold molds, blades and measuring tools, such as complex shapes Punch concave die, cold extrusion die, rolling wheel, rubbing board, cold shear knife and precision measuring tool, etc

outside C.6 The main characteristics and uses of steel for hot-making mold

order numbe r	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
6-1	T22345	5CrMnMo	With similar performance to 5CrNiMo. The quenability is slightly worse than 5CrNiMo. Working at high temperatures. Heat and fatigue resistance is less than 5CrNiMo. Suitable for making various types of forging molds with high strength and high wear resistance
6-2	T22505	5CrNiMo	With good toughness, strength and high wear resistance, it can still maintain the hardness of around HBW300 when heated to 500°C. Because it contains Mo elements, steel is not sensitive to tempering brittleness and is suitable for making various large and medium-sized forging molds
6-3	T23504	4CrNi4Mo	With good quenability, toughness and polishing properties. Can be air-cold hardening. Suitable for making hot mold and plastic mold • can also be used to make part of the cold mold

outside C.6 (continued)

orde r numb er	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
6-4	T23514	4Cr2NiMoV	The improved type of 5CrMnMo steel has high room temperature strength and toughness, better tempering stability, quenching ability and thermal fatigue resistance. Suitable for making hot forging mold
6-5	T23515	5CrNi2MoV	Similar to 5CrNiMo steel • has good quenability and thermal stability. Suitable for making large forging die and hot shear
6-6	T23535	5Cr2NiMoVSi	With good quenability and thermal stability. Suitable for making all kinds of large hot forging die
6-7	T23208	8Cr3	It has certain room temperature and high temperature mechanical properties. Suitable for the production of hot punching die punch, concave mold insert of hot edge mold, hot top forging die, hot bending mold, and working temperature lower than 500°C, less impact and required wear-resistant working parts, such as hot scissors sheet, etc. It can also be used to make cold-rolling working rolls
6-8	T23274	4Cr5W2VSi	Steel for die casting. In the medium temperature has a high thermal strength, hardness, wear resistance, toughness and good thermal fatigue performance, can be air cold hardening. It is suitable for making molds and brandrols for hot extrusion, die-casting die for light metals such as aluminum and zinc, tools for hot-top forging structural steel and heat-resistant steel, and high-speed hammer forging die for forming certain parts
6-9	T23273	3Cr2W8V	At high temperature with high strength and hardness (650°C hardness about HBW300), resistance to cold and heat alternating fatigue Good performance, but poor toughness. Suitable for high stress under high temperature, but not by the impact load of convex mold, concave mold, such as flat forging machine with convex concave mold, insert,
			copper alloy extrusion die, die casting mold: can also be used to make the compressive stress, bending stress, tensile stress mold, such as back extrusion mold: can also be made under high temperature of hot metal knife, etc
6-10	T23352	4Cr5MoSiy	With good toughness, thermal strength and thermal fatigue performance, can be air cold hardening. At low austenite temperature, the oxidation skin produced with air quenching is less inclined and can resist the impact effect of molten aluminum. Suitable for making aluminum die casting die, hot extrusion die and perforated mandrel, plastic die, etc

			Stool for die casting • is equivalent to H13 stool in ASTM A681 •
6-11	1 T23353	4Cr5MoSiV1	with good toughness and good thermal strength,
			Thermal fatigue performance and a certain wear resistance. Can be
			empty cold quenching hard. Small deformation of heat treatment.
			Suitable for aluminum, copper and its alloy casting die, hot
			extrusion die, perforating tools, mandrels, press forging die,
			plastic die, etc
			Equivalent to the H1O steel in the ASTM A681. It has very good
6-12	T22354	4Cr3Mo3SiV	quenability, very high toughness and high temperature strength.
			Suitable for making hot extrusion die, hot punching die, hot
			forging die, etc
			Use both hot and cold mold steel. With high thermal strength, high temperature hardness, tempering stability, and with
6-13	T23355	5Cr4Mo3SiMnVAL	Good wear resistance, heat fatigue resistance, toughness and thermoprocessing plasticity. The mold working temperature can be up to 700°C.
			Good antioxidant. When used for hot mold steel. Its high temperature strength and thermal fatigue performance are better than that of 3Cr2W8V steel.
			When used in cold casting, it has higher toughness than Cr 12 and low alloy die steel. Mainly used in hot extrusion mold and cold heading mold in bearing industry
			Steel for low alloy and large section hot forging die. It has good
6-14	T23364	4CrMnSiMoV	quenability, high thermal strength, heat resistance and fatigue
			resistance, wear resistance and toughness, good tempering
			resistance, heat resistance and cold and hot processing
			performance. Mainly used for production
			5CrNiMo steel can not meet the requirements of large hammer forging
			die and machine forging die
0.15	m00075	50 5W4 0.	It has good quenability and toughness, good heat treatment size
6-15	123375	5Cr5WMoS1	stability and moderate wear resistance. Suitable for making hardness
			in HRC 55 $^{\sim}$ HR C60 punch. It is also suitable for making cold mold,
			non-metal tool materials
			With good toughness and thermal strength. Air cooling hardening, heat
6-16	T23324	4Cr5MoWVSi	treatment deformation is small, air quenching when the oxide skin
			tendency is small, and can resist the erosion of molten aluminum.
			Suitable for making aluminum die casting die, forging die, hot
			extrusion
			Press die and perforation manrol, etc
			ASTM A681 H10 improved steel type, with high toughness and
6-17	T23323	3Cr3Mo3W2V	resistance to cold and heat fatigue performance, good thermal
			stability. Suitable for making hot extrusion die, hot punching die,
			hot forging die, etc

order numbe r	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
6-18	T23325	5Cr4W5Mo2V	It has high tempering resistance and thermal stability • high thermal strength, high temperature hardness and wear resistance, but its toughness and thermal fatigue resistance are lower than 4Cr5MoSiVI steel. Suitable for high temperature strength, and wear resistance performance
6-19	T23314	ICr5Mo2V	ACr5MoSiVI Improved section steel type. It has good quenability, toughness, thermal strength, fatigue resistance, heat resistance and small heat treatment deformation. Suitable for the production of aluminum, copper and alloy die, hot extrusion mold, perforation. With, core rod
6-20	T23313	3Cr3Mo3V	With relatively high heat strength and toughness, good antitempering stability and fatigue performance. Suitable for making heading die, hot extrusion die and die casting die
6-21	T23314	4Cr5Mo3V	It has good high temperature strength, good tempering stability and high thermal fatigue resistance. Suitable for making hot extrusion mold, warm forging mold and die casting mold and other hot forming mold
6-22	T23393	3Cr3Mo3VCo3	It has high thermal strength, good tempering stability and thermal fatigue resistance. Suitable for making hot extrusion die, warm forging die and die casting die

outside C.6 (continued)

outside C.7 The main characteristics and uses of steel for plastic molds

order numbe r	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
7-1	T10450	SM45	Non-alloy plastic die steel. Good cutting performance, high hardness after quenching, good strong toughness and certain wear resistance, suitable for the production of medium and small medium and low grade plastic mold

7-2	T10500	SM50	Non-alloy plastic die steel. Good cutting performance • Suitable for making small plastic mold with simple shape or the precision requirements are not high, the service life does not need very long plastic mold, but the welding performance, cold deformation performance is poor		
7-3	T10550	SM55	Non-alloy plastic die steel. Medium cutting performance. Suitable for making small plastic molds with simple shape or plastic molds with low precision requirements and short service life		
7-4	T25303	3Cr2Mo	Pre-hard steel. Equivalent to the P20 steel in the ASTM A681. Its comprehensive performance is good, high quenability, large cut Surface steel can also obtain uniform hardness • and also has good polishing performance • High mold surface finish		
7-5	T25553	3Cr2MnNiMo	 Pre-hard steel. Equivalent to the 718 steel of ASSAB in Sweden. Its comprehensive mechanical properties are good, high quenability large section steel has relatively uniform hardness distribution and good polishing performance after treatment 		
7-6	T25344	4Cr2Mn1MoS	Easy to cut pre-hardened steel, its performance is similar to 3Cr2MnNiMo, but has better machining performance		
7-7	T25378	8Cr2MnWMoVS	Pre-hardened type easy to cut steel, suitable for the production of various types of plastic mold, rubber wood mold, clay ceramic material mold and printed plate punching mold. Due to the high quenching hardness, good wear resistance, good comprehensive mechanical		
			Can be used to make precision cold punching mold		
7-8	T25515	5CrNiMnMoVSCa	Pre-hardened type easy cutting steel, adding human S element in steel to improve the cutting processing performance of steel, adding Ca element is mainly to improve the tissue form of sulfide, improve the mechanical properties of steel. Reduce the anisotropy of the steel. Suitable for making various types of precision		
			injection mold, press plastic mold and rubber mold		
7-9	T25512	2CrNiMoMnV	Pre-hardened mirror type plastic die steel. It is an improved type of 3Cr2MnNiMo steel, with high quenability and high hardness Uniform, and has good polishing performance, EDM performance and erosion flower (skin grain processing) performance • suitable for infiltration Nitrogen treatment + suitable for making large and medium-sized mirror plastic mold		

outside C.7 (continued)

order numbe r	Unifi ed numbe r, the word code name	the name of a shop	Main features and uses
7-10	T25572	2CrNi3MoA1	Statute of limitations hardening steel. Because the solid solution treatment process is done before cutting into a mold. Thus, the quenching and deformation of the mold is avoided. Therefore, the heat treatment deformation of the mold is small, and the comprehensive mechanical properties are good, suitable for making complex and precision plastic molds
7-11	T25611	INi 3MnCuMoAl	That is, 10Ni3MnCuAl. A nickel-copper-aluminum aging hardened steel. It has good quenability and small deformation by heat treatment. Mirror processing performance is good, suitable for the production of high mirror plastic mold, high appearance quality of household appliances plastic mold
7-12	A64060	06 Ni6CrMoVTiAl	Low-alloy martensite aging steel. And O6Ni steel for short. After solid solution treatment (also after rough machining), the hardness is HRC 25 to HRC 28. In the machining into the required mold shape and by the fitter finishing and polishing After that, the aging treatment. Make the hardness significantly increase. The mold deformation is small and can be used directly. Ensure that the mold has High precision and service life
7-13	A64000	OONi18CoSMo5TiA I	Precipitation hardened type ultra-high strength steel. For short, 18Ni (250) steel, with high strength and toughness, low hardening index, good formability and weldability. Suitable for making aluminum alloy extrusion die and casting mold, precision mold and cold punching mold And so on
7-14	\$42023	2Cr13	Corrosion resistant steel belongs to Cr 13 stainless steel. Good mechanical processing performance, after heat treatment has good corrosion resistance, good strength and toughness, suitable for the production of high load and under the action of plastic mold steel and transparent plastic products mold
7-15	S42043	4Cr13	Corrosion resistant steel, belongs to Cr 13 type stainless steel, good mechanical properties, after heat treatment (quenching and tempering), with excellent corrosion resistance, polishing performance, high strength and wear resistance, suitable for production and bear high load Under the action of corrosion medium, the plastic mold steel and transparent plastic products mold, etc

- 10			Corrosion-resistant pre-hardened type steel. It belongs to Cr 13
7-16	125444	4Cr13N1VS1	type stainless steel with high hardness, super mirror processability, and can be pre-hard to HRC 31 $^{\sim}$ HRC 35. The mirror
			processability is good. Suitable for production requires high
			precision, high wear resistance, high corrosion resistance
			Plastic mold: also used to make transparent plastic products mold
7-17	T25402	2Cr17Ni2	Corrosion-resistant pre-hardened type steel, with good polishing performance: with good oxidation resistance in the application of glass mold. Suitable for making corrosion resistant plastic mold,
			and do not use Cr, Ni coating
7-18	T25303	3Cr17Mo	Corrosion-resistant pre-hardened type steel, which belongs to Cr 17 type stainless steel. With excellent strong toughness and high corrosion resistance • suitable for the production of various types of high precision, high wear resistance, and corrosion resistance of plastic mold and transparent plastic products mold its
7-19	T25513	3Cr17NiMoV	Corrosion-resistant pre-hardened type steel. It belongs to Cr 17 type stainless steel • has excellent strong toughness and high corrosion resistance • suitable for making all kinds of high precision, high wear resistance, and corrosion resistance of plastic mold and pressed transparent plastic products mold
7-20	S44093	9Cr18	Corrosion-resistant and wear-resistant section steel. Belongs to the high-carbon martensitic steel. High hardness and wear resistance after quenching • improvement in corrosion resistance of Cr 17 martensitic steel • aqueous solutions in atmosphere, water and some acids and salts
			There is excellent stainless corrosion resistance. Suitable for making corrosion resistance, high strength and wear resistance parts, such as shaft, rod, springs, fasteners, etc
7-21	S46993	9Cr18MoV	Corrosion resistant and wear resistant steel, belongs to high carbon chromium stainless steel, the basic performance and use are similar to 9 Cr 18 steel, but the thermal strength and tempering resistance is better. Suitable for making parts that withstand friction and work in corrosion medium Equipment, stainless section mechanical blade and cutting tools,

order numbe r	Unifi ed numbe r, the word code	the name of a shop	Main features and uses	
8-1	name T26377	7Mn15Cr2A13V2WMo	A high Mn-V series without magnetic steel. Is stable in all states with a very low magnetic conductivity coefficient. High hardness, and strength. Good wear resistance. Suitable for making no magnetic mold, no magnetic Bearings and other structural parts that require no magnetic induction in a strong magnetic field. It can also be used to	
8-2	S31049	2Cr25Ni2OSi2	Austenitic type heat resistant steel, with good general corrosion resistance. The maximum use temperature is reached 1200°C. The maximum temperature for continuous use is 1150°C; the maximum temperature for intermittent use is 1050°C ~ 1100°C. Suitable for the production of heating furnace components, also used in the manufacture of glass mold	
8-3	S51740	0Cr17Ni4Cu4Nb	Martensite precipitate-hardened stainless steel. Low carbon content, its corrosion resistance and weldability is better than the general martensitic stainless steel. The steel has good acid resistance, good cutting ability and simple heat treatment process. During long-term use above 400°C: Suitable working temperature below 400°C. The components requiring acid corrosion resistance and high strength: it is also suitable to make plastic molds with high precision and high performance under the action of corrosion medium	
8-4	H21231	Ni25Cr15Ti2MoMn	That is, the GH2132B. Fe-25Ni-15 Cr base time-reinforced superalloy, with molybdenum, titanium, aluminum, vanadium and trace boron, is characterized by good high temperature wear resistance, high temperature deformation resistance, excellent high temperature oxidation resistance, no notch sensitivity, and excellent thermal fatigue performance. Suitable for long-term work below 650°C High temperature bearing parts and hot mold, such as copper exhaust mold, hot extrusion mold and inner cylinder, etc	
8-5	H07718	Ni53Cr19Mo3 TiNb	<pre>That is, In718 alloy, with the body heart square Y " phase and face center cubic y phase precipitation reinforced nickel base high temperature combination Gold, add human aluminum and titanium to form an intermetallic compound for y (Ni3AITi) phase precipitation reinforcement. With high temperature strength, high temperature stability, good oxidation resistance, excellent cold and heat fatigue performance</pre>	

outside C.8 The main characteristics and uses of steel for special molds

and impact toughness
• Suitable for making hot forging die, punch, hot extrusion die, die-casting die, etc., which are used for more than 600°C

Appendix D (informativ e appendix) Control table of domestic and foreign standard grade number of industrial die steel

See Table D for the reference table.1.

Stee 1	order number	The brand number of this standard	ASTM A 686/ASTM A681	JIS G4401/JIS G4404	ISO) 4957
m N	1-1	Τ7		SK70	C70U
on-a	1-2	Τ8	-	SK80	C80U
11oy	I-3	T8Mn	WI-8	SK85	
ste	1-4	Т9	W1-81/2	SK90	C90U
el :	1-5	T10	W1-10	SK105	C105U
for	1-6	T11	W1-11		
blad	1-7	T12	WI-111/2	SK120	C120U
e	1-8	T13			
+ 0	2-1	9SiCr	-	_	
tee]	2-2	8MnSi	—	_	
fo	2-3	Cr06		SKS8	
r me hla	2-4	Cr2	13		
asur de t	2-5	9Cr2			
ing ool	2-6	W	FI	SKS2	
imp	3-1	4CrW2Si		SKS41	
act	3-2	5CrW2Si	SI		
	3-3	6CrW2Si			
T _	3-4	6CrMnSi2MolV	S5	_	
t	3-5	5Cr3MnSiMolV	S7		
0 0 1 f 0	3-6	6CrW2SiV			60WCrV8
t e e					

outside D.1 The standard number is compared with ASTM, JIS and $\ensuremath{\mathrm{ISO}}$

1					
Steel for the roll roll	4-1	9Cr2V			
	4-2	9Cr2Mo	_		
	4-3	9Cr2MoV	-		
	4-4	8Cr3 NiMoV	_		
	4-5	9Cr5NiMoV			
Steel for c	5-1	9Mn2V	02		
	5-2	9CrWMn	01	SKS3	95MnCr5
	5-3	CrWMn		SKS31	
old	5-4	MnCrWV			95MnWCr5

GB/T 1299-2014

outside D.1 (continued)

Stee 1	order number	The brand number of this standard	ASTM A 686/ASTM A681	JIS G4401/JIS G4404	ISO) 4957
	5-5	7CrMn2Mo			70MnMoCr8
	5-6	5Cr8MoVSi	-	-	
	5-7	7CrSiMnMoV			
	5-8	Cr8Mo2VSi	_	_	—
	5-9	Cr4W2MoV		_	
Ste	5-10	6Cr4W3Mo2VNb			
el f	5-11	6W6Mo5Cr4V		_	_
or (5-12	W6Mo5Cr4V2		_	-
cold	5-13	Cr8			
mo l	5-14	Cr12	D3	SKDI	X210Cr12
d	5-15	Cr12W		SKD2	X210CrW12
	5-16	7Cr7Mo2V2Si		-	
	5-17	Cr5MolV	A2	SKD12	X100CrMoV5
	5-18	Cr12MoV			
	5-19	Cr12MolVi	D2	SKD10	X153CrMoV12
	6-1	5CrMnMo			
	6-2	5CrNiMo	L6	-	
	6-3	4CrNi4Mo		SKT6	45CrNiMol6
	6-4	4Cr2 NiMoV			
	6-5	5CrNi2MoV	_	SKT4	55NiCrMoV7
	6-6	5Cr2 NiMoVSi		_	
Ste	6-7	8Cr3	_		-
el f	6-8	4Cr5W2VSi		_	
or]	6-9	3Cr2W8V	H21	SKD5	X30WCrV9-3
not-	6-10	4Cr5MoSiV	H11	SKI)6	X37CrMoV5-1
work	6-11	4Cr5MoSiV1	H13	SKD61	X40CrMoV5-1
ing	6-12	4Cr3Mo3SiV	H10	-	
mol c	6-13	5Cr4Mo3SiMnVA1			
sl	6-14	4CrMnSiMoV			
	6-15	5Cr5WMoSi	A8		
	6-16	4Cr5MoWVSi	H12		X35CrWMoV5
	6-17	3Cr3Mo3W2V			

outside D.1 (continued)

Stee 1	order number	The brand number of this standard	ASTM A 686/ASTM A681	JIS G4401/JIS G4404	IS () 4957
Steel f working	6-18	5Cr4W5Mo2V	-		
	6-19	4Cr5Mo2V	_	-	-
or h mol	6-20	3Cr3Mo3V		SKD7	32CrMoV12-28
ot-	6-21	4Cr5Mo3V			
	6-22	3Cr3Mo3 VCo3	-		-
	7-1	SM15			C45U
	7-2	SM50	_	_	
	7-3	SM55			
	7-4	3Cr2Mo	P20		35CrMo7
	7-5	3Cr2MnNiMo	-	-	40CrMnNiMo8-6-4
	7-6	4Cr2Mn1MoS			
	7-7	8Cr2MnWMoVS	-		_
	7-8	5CrNiMnMoVSCa			
Ma	7-9	2(rNiMoMnV			
ıteri	7-10	2CrNi3MoAJ		-	
ial a	7-11	INi3MnCuA1	-		
and	7-12	06Ni6CrMoVTiAl			
die-	7-13	00Nil8Co8Mo5TiAI	_		
old	7-14	2Cr13			
stee	7-15	4Cr13		-	
91	7-16	4Cr13NiVSi			
	7-17	2Cr17Ni2	-	one one	
	7-18	3Cr17Mo		-	X38CrMo16
	7-19	3Cr17NiMoV	-		
	7-20	9Cr18	_	-	_
	7-21	9Cr18MoV			
Sp	8-1	7Mn15Cr2A13V2WMo			
ecia ldst	8-2	2Cr25Ni2OSi2			
l pi eel	8-3	0Cr17NiICuINb	_	_	
urpose	8-4	Ni25Cr15Ti2MoMn	-		_
	8-5	Ni53Cr19Mo3TiNb			