

Product Description

KTA series Triac with TO-3 package has high current capability and high immunity, it is widely used in motor controls, power converters, AC power supply controllers, switch & resonant mode power supply, lighting and temperature controllers, etc.

- High Current Triac
- High Surge Capability
- ◆ TO-3 Package
- Panel Mounting

Ordering Information

КТА	25	G	-	600	BW	(В	S	Т)
KTA series	Current 25:25A 40:40A	Package G:TO-3		Voltage 600:600V 800:800V	Trigger Sensitivity BW:50mA	Characteristic code Blank: Ferroalloy base plate B: Brass base plate	Characteristic code Blank: Standard main electrode terminal S: Main electrode terminal aperture 3.1mm	Characteristic code Blank: Gate terminal thickness 0.5mm T: Gate terminal thickness 0.8mm

Technical Specifications

Absolute Maximum Ratings					
Parameter		Symbol	Valu	Unit	
i alametei		600V	800V	OTIIL	
Operating junction temperature range	T _j	-40~125		C	
Storage junction temperature range		T _{stg.}	-40~150		C
0	KTA25G series	1	25		
On-state rms current	KTA40G series	T(RMS)	40		A
Non repetitive surge peak on-state current	KTA25G series	I _{TSM}	250		Α
(full cycle, Tj initial = 25 °C)(F=50Hz)	KTA40G series	TSM	400		
Repetitive peak off-state voltage(Tj=25°C)	V_{DRM}	600	800	V	
Repetitive peak reverse voltage(Tj=25 C)		V_{RRM}	600	800	V
Non repetitive peak off-state voltage		V _{DSM}	V _{DRM} +100		V
Non repetitive peak reverse voltage		V _{RSM}	V _{RRM} +100		V
I²t Value for fusing (tp=10ms)	KTA25G series	I ² t	312	A ² s	
it value for fushing (tp=10fffs)	KTA40G series	11	800	AS	
Critical rate of rise of on-state current (I _G =2×I _G T	dl/dt	50		A/μs	
Peak gate current	I _{GM}	4		Α	
Peak gate power	P _{GM}	10		W	
Average gate power dissipation	P _{G(AV)}	1	W		

General Specifications

Electrical Characteristics (Tj=25 C,unless otherwise specified)								
Symbol	Test condit	Test conditions						
l _{GT}	$V_{D}=12V R_{L}=33\Omega$	І-Ш-Ш	Max.	50	mA			
VGT	$V_D = 12V R_L = 33\Omega$	Ι-Π-Ш	Max.	1.3	V			
I _{GD}	$V_{_{ m D}} = V_{_{ m DRM}} T_{_{ m J}} = 125^{\circ}_{\rm C} R_{_{ m L}} = 3.3 {\rm k}\Omega$	І-Ш-Ш	Min.	0.2	V			
1	I _G =1.2×I _{GT}	Ι-Ш	Max.	80	mA			
'L		П		100				
I _H	I _T =100mA	!	Max.	60	mA			
dV/dt	$V_D = 2/3V_{DRM}$ gate open $T_j = 125 \text{C}$	Ι-Π-Ш	Min.	1000	V/µs			

Static Characteris	tics							
Symbol	Test conditions Value Unit							
V	I _{τм} =35A t _p =380μs Tj=25 C	KTA25G series	Max.	1.55	V			
TM	I _{TM} =60A t _ρ =380μs Tj=25 C	KTA40G series	Max.					
l I _{DRM}	\/ -\/ \/ -\/	T _j =25°C	Max.	10	μA			
. I _{RRM}	$V_{D} = V_{DRM} V_{R} = V_{RRM}$	T=125 C	Max.	5	mA			

Thermal Resistance	e			
Symbol	Test condi	Value	Unit	
R _{th(j-c)}	junction to case(AC)	KTA25G series	0.85	°C AAA
	junction to case(AC)	KTA40G series	0.65	

Application

KTA series triac is widely used in motor controls, power converters, AC power supply controllers, switch & resonant mode power supply, lighting and temperature controllers, etc.

Pakgage Mechanical Data

Ref.	Dimensions (mm)			Б.	Dimensions (mm)		
	Min.	Тур.	Max.	Ref.	Min.	Тур.	Max.
А			39.2	J		8	
В	29.8	30	30.2	К	6.2	6.35	6.5
С			21.7	М		5.5	
D			21.5	N	4.7	4.8	4.9
Е			20.5	t		0.8	
F			23	t1		0.5	
H1	2.4	2.5	2.6	h1		8	
H2		11.5		h2		6.5	
Н			23.5	k1	ф4.1	ф4.2	ф4.3
G		15.1		k2		ф1.8	
I		10.7		r.Z	ф3.0	ф3.1	ф3.2

The characteristic code S represents that the aperture k2 of T1 and T2 terminals is 3.1mm, which is suitable for M3 screw installation and wiring

The characteristic code T represents that the gate terminal thickness t1 is 0.8mm

Characteristic Curve

Fig.1 Maximum power dissipation versus on-state rms current

Fig.2 On-state rms current versus case temperature

Fig.3 Surge peak on-state current versus number of cycles

Fig.4 On-state characteristics (maximum values)

Fig.5 Non-repetitive surge peak on-state current for a sinusoidal pulse and corresponding value of I²t

Fig.6 Relative variation of gate trigger,holding and latching current versus junction temperature

